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1. Introduction

The properties of self-similar actions of groups on sets have been
investigated by Laca-Raeburn-Ramagge-Whittaker through their as-
sociated Toeplitz and Cuntz-Pimsner algebras [3]. In this project we
attempt to generalise the definition of a self-similar action to a group
G on a finite directed graph E. We investigate the operator algebraic
properties of the resulting structure and deduce that each self-similar
action of a group on a finite directed graph has a universal C∗-algebra
generated by an isomorphic copy of the Toeplitz graph C∗-algebra of
E and an isomorphic copy of the group C∗-algebra of G.

2. Self-similar actions

We begin our investigation by defining a self-similar action of a group
on a graph.

Definition 2.0.1. Let E be a finite, directed graph with surjective range
map and let G be a group. Denote by E∗ the set of all finite paths in
E. A self-similar action (G,E) is a faithful action of G on E∗ such
that

g · r(f) = r(g · f)

for all g ∈ G and f ∈ E1 and for every f ∈ E1 and g ∈ G, g · f ∈ E1

and there exists unique g|f ∈ G with

(g · fµ) = (g · f)(g|f · µ)

for all µ ∈ E∗ with r(µ) = s(f)

Remark 2.0.1. For g ∈ G and f ∈ E1, g·f = g·r(f)f = (g·r(f))(g·f)
so that g|v := g satisfies g · vf = (g · v)(g|v · f) whenever v = r(f).
There is generally no group element which uniquely satisfies this.

Lemma 2.0.1. Let (G,E) be a self-similar action. Then

(1) For all g ∈ G and µ ∈ E∗, g · µ ∈ E0 if and only if µ ∈ E0

(2) For every v ∈ E0 and g ∈ G, f 7→ g · f is a bijection from
r−1(v) to r−1(g · v).

(3) For all g ∈ G and N ∈ N{0}, µ ∈ EN ⇒ g · µ ∈ EN .
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(4) For each N ∈ N \ {0} and (g, ν) ∈ G×EN , there exists unique
g|ν ∈ G satisfying

g · (νµ) = (g · ν)(g|ν · µ)

for all µ ∈ E∗ with r(µ) = s(ν).
(5) For g, h ∈ G and µ, ν ∈ E∗ with r(µ) = s(ν), we have

(a)
g|νµ = (g|ν)|µ

(b)
gh|ν = g|h·νh|ν

(c)
g|−1ν = g−1|g·ν

(6) For every g ∈ G and N ∈ N, g : EN → EN is bijective.

Proof. (1) Fix µ ∈ E∗ and g ∈ G. For the forward direction, sup-
pose that g ·µ ∈ E0. Since r is surjective, u := g ·µ is the range
of some edge f . Now µ = g−1 · g · µ = g−1 · u = g−1 · r(f) =
r(g−1 · f) ∈ E0. For the reverse direction, if µ ∈ E0, µ = r(h)
for some edge h, and g · µ = g · r(h) = r(g · h) ∈ E0.

(2) Fix v ∈ E0 and g ∈ G. For f, h ∈ r−1(v) such that g · f = g · h,
we have f = g−1·g·f = g−1·g·h = h, hence f 7→ g·f is injective.
For f ∈ r−1(g ·v), f = g ·g−1 ·f and r(f) = g ·v ⇒ r(g−1 ·f) = v,
so that f 7→ g · f is surjective.

(3) Fix g ∈ G and N ∈ N{0}. If N = 0, then g · µ ∈ E0 by (1). If
N = 1, then g ·µ ∈ E1 by definition of a self-similar action. Now
suppose that g · µ ∈ EN−1 whenever µN−1. Then for µ ∈ EN ,

g · µ = (g · µ1)(g|µ1 · µ2...µN) ∈ EN

(4) Fix N ∈ N \ {0} and (g, ν) ∈ G× EN . If r(µ) = s(ν), then

g · νµ = (g · ν)...(g|ν1 ...|νN · µ)

so that g|ν := g|ν1|ν2 ...|νN has the desired property. For unique-
ness, observe that when µ ∈ E1, we know that g|µ uniquely sat-
isfies the desired property by definition of a self-similar action.
Suppose now that whenever α ∈ EN−1 and g·(αµ) = (g·α)(h·µ)
for all µ with r(µ) = s(α), we have h = g|α. Now fix ν ∈ EN ,
and suppose g · (νµ) = (g · ν)(h · µ) for all µ with r(µ) = s(ν).
We must show that h = g|ν . We have

g · νµ = (g · ν1)(g|ν1 · (ν2...νN)µ)

= (g · ν1)(g|ν1 · (ν2...νN))(g|ν1|ν2...νN · µ)

and

(g · ν)(h · ν) = (g · ν1)(g|ν1 · (ν2...νN))(h · µ)

so

(g · ν1)(g|ν1 · (ν2...νN))(g|ν1|ν2...νN · µ) = (g · ν1)(g|ν1 · (ν2...νN))(h · µ)
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for all µ with r(µ) = s(ν) gives h = g|ν .
(5) Fix g, h ∈ G and µ, ν ∈ E∗ with r(µ) = s(ν).

(a) If |νµ| = 0, then the assertion reduces to g = g. Suppose
|νµ| > 0. If r(λ) = s(µ), then

g · νµλ = (g · ν)(g|ν · µλ)

= (g · ν)(g|ν · µ)(g|ν |µ · λ)

= (g · νµ)(g|ν |µ · λ)

and

g · νµλ = (g · νµ)(g|νµ · λ)

so that g|νµ = g|ν |µ by (4).
(b) If |ν| = 0, then assertion reduces to g = g. Suppose |ν| > 0.

If r(λ) = s(µ), then

g · h · νλ = g · (h · ν)(h|ν · λ)

= (g · (h · ν))(g|h·ν · h|ν · λ)

= (gh · ν)(g|h·νh|ν · λ)

= (gh · νλ)

= (gh · ν)(gh|ν · λ)

so that gh|ν = g|h·νh|ν by (4).
(c)

νλ = g−1 · g · νλ
= g−1 · (g · ν)(g|νλ)

= ν(g−1|g·νg|νλ)

so that g|−1ν = g−1|g·ν by uniqueness of inverses in the group
and (4).

(6) We showed in (2) that the map is injective. Since EN is finite,
(3) and the pigeonhole principle imply that the map is bijective.

�

3. Operator-algebraic properties

Having defined a self-similar action of a group on a graph and proved
some of the characteristics of such an action, we now investigate the
properties of such structures in the context of C∗-algebras.

3.1. Representations. Representations are what we will use to em-
bed the structure of self-similar actions in a C∗-algebra.

Definition 3.1.1. Let (G,E) be a self-similar action. A Toeplitz rep-
resentation (v, t) of (G,E) in a unitary C∗-algebra B is a pair of maps
v : G→ B and t : E∗ → B with the following properties:

(1) v is a unitary representation of G in B.
(2) The set {tµ : µ ∈ E∗} has
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(a) {tv : v ∈ E0} are mutually orthogonal projections, with∑
v∈E0 tv = 1B,

(b) tµtν = tµν whenever s(µ) = r(ν),
(c) t∗µtµ = ts(µ) for all µ ∈ E∗,
(d) For all n ∈ N and v ∈ E0,

∑
r(µ)=v
|µ|=n

tµt
∗
µ ≤ tv

(3) vgtµ = tg·µvg|µ for all g ∈ G and µ ∈ E∗.

Remark 3.1.1. The definition of a Toeplitz representation of a self-
similar action encodes the information contained about the group and
graph. Condition (1) says a quotient copy of the group is contained in
the unitaries of the enveloping C∗-algebra. Condition (2) expresses the
same properties carried by the Toeplitz algebra of the graph E. Condi-
tion (3) expresses the structure of the action itself.

Lemma 3.1.1. Let (G,E) be a self-similar action and let (v, t) be a
Toeplitz representation of (G,E) in a unital C∗-algebra B. If g ∈ G
and µ, ν ∈ E∗ satisfy tµvgtν 6= 0, then g · s(ν) = s(µ). Suppose that
g, h ∈ G and µ, ν, σ, τ ∈ E∗ satisfy g · s(ν) = s(µ) and h · s(τ) = s(σ).
Then

tµvgt
∗
νtσvht

∗
τ =


tµvgh|h−1·ν′

t∗τ(h−1·ν′) if ν = σν ′

tµ(g·σ′)vg|σ′ht
∗
τ if σ = νσ′

0 otherwise

Proof. Fix g, h ∈ G and µ, ν, τ, σ ∈ E∗.

tµvgt
∗
ν 6= 0 ⇒ tµts(µ)vgt

∗
ν 6= 0

⇒ tµvgtg−1·s(µ)t
∗
ν 6= 0

⇒ tµvg(tνtg−1·s(µ))
∗ 6= 0

⇒ s(ν) = g−1 · s(µ)

⇒ g · s(ν) = s(µ)(1)
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Now, suppose ν = σν ′ for some ν ′. Then

tµvgt
∗
νtσvht

∗
τ = tµvgt

∗
σν′tσvht

∗
τ

= tµvgt
∗
ν′t
∗
σtσvht

∗
τ

= tµvgt
∗
ν′ts(σ)vht

∗
τ

= (tτv
∗
hts(σ)tν′v

∗
gt
∗
ν′)
∗

= (tτv
∗
htν′v

∗
gt
∗
µ)∗ since s(σ) = r(µ)

= tµvgt
∗
ν′vht

∗
τ

= tµvg(vh−1tν′)
∗t∗τ

= tµvg(th−1·ν′vh−1|ν′ )
∗t∗τ

= tµvgv
−1
h−1|ν′

(tτ th−1·ν′)
∗

= tµvgh|h−1·ν′
t∗τ(h−1·ν′)(2)

Where the last line is true since (1) implies that s(τ) = h−1 · r(ν ′) =
r(h−1 · ν ′) because r(ν ′) = s(σ).

Now suppose σ = νσ′. Then

tµvgt
∗
νtσvht

∗
τ = tµvgt

∗
νtνσ′vht

∗
τ

= tµvgts(ν)tσ′vht
∗
τ

= tµvgtσ′vht
∗
τ since s(ν) = r(σ′)

= tµtg·σ′vg|σ′vht
∗
τ

= tµ(g·σ′)vg|σ′ht
∗
τ(3)

Where the last line is true since (1) implies that s(µ) = g · s(ν) =
g · r(σ′) = r(g · σ′). If neither of the above hypotheses hold, then we
have r(µ) 6= r(σ) and so the product t∗νtσ = t∗νtr(ν)tr(σ)tσ is zero, as tr(ν)
and tr(σ) are then mutually orthogonal projections. This, combined
with equations (2) and (3), gives the result. �

Lemma 3.1.2. Let (G,E) be a self-similar action and let (v, t) be a
Toeplitz representation of (G,E) in a unital C∗-algebra B. Then

C∗({vg} ∪ {tµ}) = span{tµvgt∗ν : g ∈ G, µ, ν ∈ E∗}

Proof. Define K := span{tµvgt∗ν : g ∈ G, µ, ν ∈ E∗}. For the reverse
containment, we see that K ⊂ C∗({vg}∪{tµ}). Since C∗({vg}∪{tµ}) is
a C∗-algebra, it is complete, so K = span{tµvgt∗ν : g ∈ G, µ, ν ∈ E∗} ⊂
C∗({vg} ∪ {tµ}). For the reverse containment, we see that K contains
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the generating set {vg} ∪ {tµ}, for fix g ∈ G and µ ∈ E∗. Then

vg =
∑
u′∈E0

tu′vg

=
∑
u∈E0

∑
u′∈E0

tu′vgtu

=
∑
u∈E0

∑
u′∈E0

tu′vgt
∗
u each tu is a projection

∈ K

And,

tµ = tµ1

=
∑
u∈E0

tµ1tu

=
∑
u∈E0

tµ1t∗u as each tu is a projection

∈ K

Further, K is closed under involution in B, and is closed under multi-
plication as proven in the previous lemma. Now K = span{tµvgt∗ν : g ∈
G, µ, ν ∈ E∗} is a closed *-subalgebra of B containing the generating
elements of C∗({vg}∪{tµ}), hence C∗({vg}∪{tµ}) ⊂ span{tµvgt∗ν : g ∈
G, µ, ν ∈ E∗} and we have established reverse containment. �

3.2. The Universal C∗-algebra.

Theorem 3.2.1. Let (G,E) be a self-similar action. There is a C∗-
algebra T C∗(G,E) generated by a Toeplitz representation (u, s) which
is universal in the sense that for any other Toeplitz representation (v, t)
in a C∗-algebra B, there is a homomorphism πv,t : T C∗(G,E) → B
satisfying πv,t(ug) = vg and πv,t(sµ) = tµ. We call this universal C∗-
algebra the Toeplitz algebra of (G,E).

Proof. Suppose (G,E) is a self-similar action. Let A be the formal
vector space spanned by finite linear combinations of the form∑

(µ,g,ν)∈F

aµ,g,νθµ,g,ν where F ⊂ {(µ, g, ν) : g · s(ν) = s(µ)}

Define a bilinear multiplication on A by

θµ,g,ν · θσ,h,τ =


θµ,gh|h−1·ν′ ,τ(h

−1·ν′) if ν = σν ′

θµ(g·σ′),g|σ′h,τ if σ = νσ′

0 otherwise

And then · extends to a multiplication on A. Define an involution on
A via

(
∑
F

aµ,g,νθµ,g,ν)
∗ :=

∑
F

aµ,g,νθν,g,µ



SELF-SIMILAR ACTIONS OF GROUPS ON GRAPHS 7

Then A is a complex *-algebra. Given a Toeplitz representation (v, t)
of (G,E) in a C∗-algebra B, there is a *-homomorphism π0

v,t : A →
C∗(v, t) defined by π0

v,t(θµ,g,ν) := tµugt
∗
ν , since C∗(v, t) is precisely the

closed span of elements of this form, as proven in Lemma 3.1.2. For
a ∈ A, define

N(a) := sup{‖π0
v,t(a)‖ : (v, t) is a Toeplitz representation of (G,E)}

We note that for each a ∈ A, N(a) is finite:

N(a) = sup{‖
∑
F

aµ,g,νtµvgt
∗
ν‖ : (v, t) is a Toeplitz representation}

≤ sup{
∑
F

‖aµ,g,νtµvgt∗ν‖ : (v, t) is a Toeplitz representation}(4)

Now,

‖tµvgt∗ν‖2 = ‖tµvgt∗νtνvg−1t∗µ‖
= ‖tµvgts(ν)vg−1t∗µ‖
= ‖tµtg·s(ν)vgvg−1t∗µ‖
= ‖tµt∗µ‖ since g · s(ν) = s(µ)

= ‖tµ‖2

= ‖t∗µtµ‖
= ‖ts(µ)‖
= 1(5)

Where the last line is true because ts(µ) is a projection. Thus, combining
(4) with (5)W gives

N(a) ≤ sup{
∑
F

|aµ,g,ν |} =
∑
F

|aµ,g,ν |

Which is a finite sum of finite positive numbers, hence finite. N de-
scends to a C∗-norm on the *-algebra A/ker(N): for a + ker(N), b +

ker(N) ∈ A/ker(N), we have

‖(a+ ker(N))∗(a+ ker(N)‖ = ‖a∗a+ ker(N)‖
= N(a∗a)

= sup
(v,t)

{‖π0
v,t(a

∗a)‖}

= sup
(v,t)

{‖π0
v,t(a)‖2}

= sup
(v,t)

{‖π0
v,t(a)‖}2

= N(a)2

= ‖a+ ker(N)‖2
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and

‖(a+ ker(N))(b+ ker(N))‖ = ‖ab+ ker(N)‖
= sup

(v,t)

{‖π0
v,t(ab)‖}

≤ sup
(v,t)

{‖π0
v,t(a)‖‖π0

v,t(b)‖}

≤ sup
(v,t)

{‖π0
v,t(a)‖} sup

(v,t)

{‖π0
v,t(a)‖}

= N(a)N(b)

= ‖(a+ ker(N))‖‖(b+ ker(N))‖

so that A/ker(N) is a C∗-algebra. We now define families {sµ : µ ∈ E∗}
and {ug : g ∈ G} iasA/ker(N)

sµ := θµ,e,s(µ)

ug :=
∑
v∈E0

θv,g,g−1·v

These families induce a Toeplitz representation (u, s) of (G,E) inA/ker(N)
(note that it suffices to check the Toeplitz representation axioms in A,
as the quotient map is a homomorphism):

(1) u is a unitary map: The element
∑

v∈E0 θv,e,v is a multiplicative
identity. For θµ,g,ν ∈ A, we have

(
∑
v∈E0

θv,e,v)θµ,g,ν =
∑
v∈E0

θv,e,vθµ,g,ν

= θvµ,eg,ν where v = r(µ)

= θµ,g,ν

and

θµ,g,ν(
∑
v∈E0

θv,e,v) =
∑
v∈E0

θµ,g,νθv,e,v

= θµ,g,vν where v = r(ν)

= θµ,g,ν

Now for g ∈ G, we have

ug−1 =
∑
v∈E0

θv,g−1,g·v

=
∑
v∈E0

θg−1·v,g−1,v

= u∗g
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and

ug−1ug = (
∑
v∈E0

θv,g−1,g·v)(
∑
v∈E0

θv,g,g−1·v)

=
∑
v∈E0

∑
v′∈E0

θv,g−1,g·v · θv′,g,g−1·v′

=
∑
v∈E0

θv,g−1,g·vθg·v,g,g−1·(g·v)

=
∑
v∈E0

θv,g−1g|g−1·(g),g
−1·(g·v)(g−1·(g·v))

=
∑
v∈E0

θv,e,v

and since g ∈ G was arbitrary, the above argument works for
the reverse multiplication by replacing g with g−1. Finally, for
g, h ∈ G,

uguh = (
∑
v∈E0

θv,g,g−1·v)(
∑
v∈E0

θv,h,h−1·v)

=
∑
v∈E0

∑
v′∈E0

θv,g,g−1·v · θv′,h,h−1·v′

=
∑
v∈E0

θv(g·(g−1·v)),g|g−1·vh,h
−1·(g−1·v)

=
∑
v∈E0

θv,gh,(gh)−1·v

= ugh

So that u is a unitary homomorphism of G into U(A/ker(N)),
as required.

(2) Considering the family {sµ : µ ∈ E∗}, we have:
(a) For µ, ν ∈ E∗,

sµsν = θµ,e,s(µ) · θν,e,s(ν)
= δ(ν),s(µ)θµν,e,s(ν)

= sµν if r(ν) = s(µ)

(b) For v, u ∈ E0,

svsu = θv,e,vθu,e,u

= δv,uθv,e,v

with the property that
∑

v∈E0 sv =
∑

v∈E0 θv,e,v = 1.
(c) For µ ∈ E∗,

s∗µsµ = θs(µ),e,µθµ,e,s(µ)

= θs(µ),e,s(µ)

= ss(µ)
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(d) For n ∈ N, v ∈ E0, we see that
∑

r(µ)=v
|µ|=n

sµs
∗
µ =

∑
r(µ)=v
|µ|=n

θµ,e,µ

is self-adjoint:

(
∑
r(µ)=v
|µ|=n

θµ,e,µ)∗ =
∑
r(µ)=v
|µ|=n

θ∗µ,e,µ

=
∑
r(µ)=v
|µ|=n

θµ,e,µ

and that
∑

r(µ)=v
|µ|=n

sµs
∗
µ = (

∑
r(µ)=v
|µ|=n

sµs
∗
µ)2 since

(
∑
r(µ)=v
|µ|=n

θµ,e,µ)2 =
∑
r(µ)=v
|µ|=n

∑
r(ν)=v
|ν|=n

θµ,e,µθν,e,ν

=
∑
r(µ)=v
|µ|=n

θµs(µ),e,µ

=
∑
r(µ)=v
|µ|=n

θµ,e,µ

So
∑

r(µ)=v
|µ|=n

sµs
∗
µ is a projection for each v ∈ E0 and n ∈ N.

Now for v ∈ E0,

(
∑
r(µ)=v
|µ|=n

sµs
∗
µ)sv =

∑
r(µ)=v
|µ|=n

θµ,e,µ · θv,e,v

=
∑
r(µ)=v
|µ|=n

θµ,e,v(e·µ)

=
∑
r(µ)=v
|µ|=n

θµ,e,µ

=
∑
r(µ)=v
|µ|=n

sµs
∗
µ
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and

sv(
∑
r(µ)=v
|µ|=n

sµs
∗
µ) =

∑
r(µ)=v
|µ|=n

θv,e,v · θµ,e,µ

=
∑
r(µ)=v
|µ|=n

θv(e·µ),e,µ

=
∑
r(µ)=v
|µ|=n

θµ,e,µ

=
∑
r(µ)=v
|µ|=n

sµs
∗
µ

so by [4], ∑
r(µ)=v
|µ|=n

sµs
∗
µ ≤ sv

(3) Finally, for g ∈ G and µ ∈ E∗,

ugsµ =
∑
v∈E0

θv,g,g−1·v · θµ,e,s(µ)

=
∑
v∈E0

θg·v,g,vθµ,e,s(µ)

= θg·r(µ),g,r(µ) · θµ,e,s(µ)
= θg·r(µ)(g·µ),g|µe,s(µ)

= θg·µ,g|µ,s(µ)(6)

and

sg·µug|µ = θg·µ,e,s(g·µ)
∑
v∈E0

θg|µ·v,g|µ,v

=
∑
v∈E0

θg·µ,e,s(g·µ) · θg|µ·v,g|µ,v

= θg·µ,e,s(g·µ) · θg|µ·s(µ),g|µ,s(µ)
= θg·µ,eg|µ|

(g|−1
µ ·s(g·µ))

,s(µ)(g|−1
µ ·s(g·µ))

= θg·µ,g|µ,sµ
= ugsµ

So (u, s) as defined is a Toeplitz representation. We now define T C∗(G,E) :=

A/ker(N). For the universal property, let (v, t) be a Toeplitz represen-
tation of (G,E) in a C∗-algebra B. Define πv,t : T C∗(G,E) → B by
πv,t(a+ ker(N)) := π0

v,t(a), and πv,t has the desired property. �
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Lemma 3.2.1. Let (G,E) be a self similar action. Suppose that π is
a representation of T C∗(G,E) on a Hilbert space H and that ρ is a
representation of C∗(G) on a Hilbert space K. Then there is a repre-
sentation π of T C∗(G,E) on H⊗K such that

(π × ρ)(ug) = π(ug)⊗ ρ(iG(g))

and

(π × ρ)(sµ) = π(sµ)⊗ 1K

Proof. Let (G,E) be a self similar action, let π be a representation of
T C∗(G,E) on a Hilbert space H and let ρ be a representation of C∗(G)
on a Hilbert space K. We define the linear map (π×ρ) : T C∗(G,E)→
H⊗K on the spanning elements of T C∗(G,E) by the formula

(π × ρ)(sµugs
∗
ν) := π(sµugs

∗
ν)⊗ ρ(iG(g))

The map is multiplicative and *-preserving because both ρ and π are.
Now (π × ρ) is a *-homomorphism from T C∗(G,E) to B(H⊗K), and
is thus a representation of T C∗(G,E) on H⊗K. We see that for g ∈ G
and µ ∈ E∗, we have

(π × ρ)(ug) = (π × ρ)(
∑
v∈E0

∑
v′∈E0

svugsv′)

= (π × ρ)(
∑
v∈E0

svug
∑
v′∈E0

sv′)

= π(
∑
v∈E0

svug
∑
v′∈E0

sv′)⊗ ρ(iG(g))

= π(
∑
v∈E0

sv)π(ug)π(
∑
v′∈E0

sv′)⊗ ρ(iG(g))

= π(ug)⊗ ρ(iG(g))

and

(π × ρ)(sµ) = (π × ρ)(
∑
v∈E0

sµ1sv)

= π(
∑
v∈E0

sµ1sv)⊗ ρ(iG(e))

= π(sµ)⊗ 1K

So that (π × ρ) is a representation with the desired properties. �

Theorem 3.2.2. Let (G,E) be a self-similar action. Let (u, s) be the
universal representation in T C∗(G,E). Then each sλ is nonzero, and
there is an injective homomorphism πE : T C∗(E) → T C∗(G,E) such
that πE(tλ) = sλ for all λ ∈ E∗. Further, the map g 7→ ug induces an
injective homomorphism ι : C∗(G)→ T C∗(G,E).
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Proof. Let (G,E) be a self-similar action and let (u, s) be the universal
representation of (G,E). Consider the Hilbert space `2(E) = span{δλ :
λ ∈ E∗}, where for λ ∈ E∗, δλ : E∗ → C is the map defined by

δλ(µ) =

{
1 if λ = µ

0 otherwise

We construct a Toeplitz representation (U, S) of (G,E) in B(`2(E∗))
via

Ugδµ := δg·µ
and

Sλδµ :=

{
δλµ if s(λ) = r(µ)

0 otherwise

Ug and Sµ are clearly bounded operators for all g and µ, as they map
the spanning set of `2(E∗) into itself. It has been shown that the
set {Sλ : λ ∈ E∗} is indeed a Toeplitz-Cuntz-Krieger family of E in
B(`2(E∗)) [2][1], so it remains to show that U is a unitary map and
that the pair (U, S) satisfies axiom (3) in Definition 3.1.1.

Fix g ∈ G. Then for µ, ν ∈ E∗, we have

(Ugδµ|Ugδν) = (δg·µ|δg·ν)
and since µ and ν were arbitrary, by faithfulness of the action we have

(δg·µ|δg·ν) =

{
1 if µ = ν

0 otherwise

which is precisely the value of (δµ|δν), and so Ug is an isometry. Fur-
thermore, for g ∈ G we have Ug−1Ugδµ = δg−1·g·µ = δµ for all µ ∈ E∗,
so that the Ug are invertible, hence unitary, with U∗g = Ug−1 .

Now, fix g ∈ G and µ ∈ E∗.
Sg·µUg|µδλ = Sg·µδg|µ·λ

= δ(g·µ)(g|µ·λ

= δg·(µλ)

= UgSµδλ

for all λ ∈ E∗ with r(λ) = s(µ). For λ not satisfying this condition, we
have r(g|µ · λ) = g|µ · r(λ) 6= g|µ · s(µ) = s(g · µ), so that

Sg·µUg|µδλ = 0 = UgSµδλ

and then
UgSµ = Sg·µUg|µ

for all g ∈ G and µ ∈ E∗, and (U, S) is a Toeplitz representation.
The universal property of T C∗(G,E) now gives a homomorphism

ψ : T C∗(G,E)→ B(`2(E∗)) such that ψ(ug) = Ug and ψ(sλ) = Sλ for
all g ∈ G and λ ∈ E∗. In particular, for any λ ∈ E∗, Sλ = ψ(sλ) 6= 0,
implying that sλ 6= 0.
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Further, the family {sµ : µ ∈ E∗} is a Toeplitz-Cuntz-Krieger fam-
ily in T C∗(G,E) (contained in condition (2) of the definition of a
Toeplitz representation), so that by the universal property of T C∗(E),
the Toeplitz algebra of E, there is a homomorphism πE : T C∗(E) →
T C∗(G,E) with the property that πE(tλ) = sλ for all λ ∈ E∗. Since
each sλ is nonzero, ker(πE) = 0, so πE is injective.

Finally, to see that T C∗(G,E) contains a copy of C∗(G), observe
that the map g 7→ ug from G to T C∗(G,E) induces a homomorphism
ι : C∗(G) → T C∗(G,E) such that ι(iG(g)) = ug for all g ∈ G by the
universal property of C∗(G).

Now let π be a representation of T C∗(G,E) on some Hilbert spaceH
and let ρ be a faithful representation of C∗(G) on some Hilbert space K.
By Lemma 3.2.1, there is a representation π×ρ of T C∗(G,E) on H⊗K
such that (π×ρ)(ug) = π(ug)⊗ρ(iG(g)). Now by the universal property
of C∗(G), there is an injective homomorphism θ : C∗(G)→ B(H⊗K)
induced by the map g 7→ (π × ρ)(ug), which is injective because ρ is.
Now we have

θ(iG(g)) = (π × ρ)(ug)

= (π × ρ)(ι(iG(g)))

so that ι is also injective, as required. �
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