SELF-SIMILAR ACTIONS OF GROUPS ON GRAPHS
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1. INTRODUCTION

The properties of self-similar actions of groups on sets have been
investigated by Laca-Raeburn-Ramagge-Whittaker through their as-
sociated Toeplitz and Cuntz-Pimsner algebras [3]. In this project we
attempt to generalise the definition of a self-similar action to a group
G on a finite directed graph E. We investigate the operator algebraic
properties of the resulting structure and deduce that each self-similar
action of a group on a finite directed graph has a universal C*-algebra
generated by an isomorphic copy of the Toeplitz graph C*-algebra of
E and an isomorphic copy of the group C*-algebra of G.

2. SELF-SIMILAR ACTIONS

We begin our investigation by defining a self-similar action of a group
on a graph.

Definition 2.0.1. Let E be a finite, directed graph with surjective range
map and let G be a group. Denote by E* the set of all finite paths in
E. A self-similar action (G, E) is a faithful action of G on E* such
that

g-r(f)=rlg-f)
for all g € G and f € E' and for every f € E* and g € G, g- f € E!
and there exists unique gly € G with

(g-fr)=(g-F)gls-n)
for all p € E* with r(u) = s(f)
Remark 2.0.1. Forge G and f € E', g-f = gr(f)f = (9-7(f)(g-f)
so that g|, = g satisfies g -vf = (g -v)(gl, - f) whenever v = r(f).
There is generally no group element which uniquely satisfies this.
Lemma 2.0.1. Let (G, E) be a self-similar action. Then

(1) For allg € G and p € E*, g+ € E° if and only if u € E°

(2) For every v € EY and g € G, f ~ g - f is a bijection from
r~Yv) to r~(g-v).

(3) Forallge€ G and N e N{0}, p€ EN = g-u e EV.
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(4) For each N € N\ {0} and (g9,v) € G x EN, there exists unique
gl, € G satisfying
g-(vn)=(g-v)(gl - 1)
for all p € E* with r(u) = s(v).
(5) For g,h € G and p,v € E* with r(u) = s(v), we have
(a)

g’VH = (g|u>|#
(b)

ghl, = glnuhl,
(c)

gt =9 gw

(6) For every g € G and N € N, g: EN — EN s bijective.

Proof. (1) Fix g € E* and g € G. For the forward direction, sup-
pose that ¢g-p € E°. Since r is surjective, u := ¢ - i is the range
of some edge f. Now pu=g ' -g-p=g ' -u=g"' -r(f) =
r(g7' - f) € E°. For the reverse direction, if u € E°, u = r(h)
for some edge h, and g-pu=g-r(h) =r(g-h) € E°.

(2) Fixv e EYand g € G. For f,h € r~(v) such that g- f = g-h,
we have f = g~ '-g-f = g~ '-g-h = h, hence f — g-f is injective.
For f € r-'(g-0), f = g-g~-f and r(f) = gv = r(g*-f) =,
so that f +— ¢ - f is surjective.

(3) Fix g € G and N € N{0}. If N =0, then g-u € EY by (1). If
N =1, then g-u € E' by definition of a self-similar action. Now
suppose that g - u € EVN~! whenever =1, Then for p € EV,

g 1=(9"p1)(glu - pr2.pi) € BV
(4) Fix N € N\ {0} and (g,v) € G x EN. If r(u) = s(v), then

g-vib="_9-v)-(glu . luy - 1)

so that g|, := glu,|us... |y has the desired property. For unique-
ness, observe that when p € E', we know that g, uniquely sat-
isfies the desired property by definition of a self-similar action.
Suppose now that whenever « € EN ! and g-(ap) = (g-a)(h-up)
for all u with r(u) = s(a), we have h = g|,. Now fix v € EV,
and suppose g - (vpu) = (g-v)(h - p) for all g with r(u) = s(v).
We must show that h = g|,. We have

g v = (g-11)(gl - (2-vn)p)

= (g-v)(gln - (2o vn)) (Gl lvaen - 1)

(g-v)(h-v) = (9-1)(gln - (v2..vn)) (- 1)

(9 - 1) (gl - (2o vn))(Glin vy - 1) = (g - 1) (glon - (v2vn)) (B )
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for all p with r(u) = s(v) gives h = g|,.
(5) Fix g,h € G and p,v € E* with r(u) = s(v).
(a) If [vp| = 0, then the assertion reduces to g = g. Suppose
lvp] > 0. If r(A) = s(p), then

g-vpA = (g-v)(gl, - pA)
(g-v)(gly - 1)(glvlu-N)
= (g-vu)(glulu-N)

and
g-vprh = (g-vp)(gluy - N)

so that gl = glu[u by (4).
(b) If |v| = 0, then assertion reduces to g = g. Suppose |v| > 0.

If r(A\) = s(u), then
g-h-vA = g-(h-v)(hl, )
(g (h-v))(glny - Bly-A)
= (gh-v)(glnrhly - )
(gh-vA)
= (gh-v)(ghl, - A)
so that ghl, = gl hl, by (4).
()
VA = g -g-UA
= g " (g-V)(glN)
= v(g " lgvglN)
so that g|, ' = g7, by uniqueness of inverses in the group
and (4).
(6) We showed in (2) that the map is injective. Since E¥ is finite,

(3) and the pigeonhole principle imply that the map is bijective.
O

3. OPERATOR-ALGEBRAIC PROPERTIES

Having defined a self-similar action of a group on a graph and proved
some of the characteristics of such an action, we now investigate the
properties of such structures in the context of C*-algebras.

3.1. Representations. Representations are what we will use to em-
bed the structure of self-similar actions in a C*-algebra.

Definition 3.1.1. Let (G, E) be a self-similar action. A Toeplitz rep-
resentation (v,t) of (G, E) in a unitary C*-algebra B is a pair of maps
v:G— B andt: E*— B with the following properties:

(1) v is a unitary representation of G in B.

(2) The set {t, : pn € E*} has
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(a) {t, : v € E°} are mutually orthogonal projections, with

Z’UEEO tv = 1B7
(b) t,t, = t,, whenever s(u) =r(v),
(¢) tity =ty for all p € E7,
(d) For alln € N and v € E°,

(3) vty = tg. vy, for allg € G and p € E*.

Remark 3.1.1. The definition of a Toeplitz representation of a self-
similar action encodes the information contained about the group and
graph. Condition (1) says a quotient copy of the group is contained in
the unitaries of the enveloping C*-algebra. Condition (2) expresses the
same properties carried by the Toeplitz algebra of the graph E. Condi-
tion (3) expresses the structure of the action itself.

Lemma 3.1.1. Let (G, E) be a self-similar action and let (v,t) be a
Toeplitz representation of (G, E) in a unital C*-algebra B. If g € G
and p,v € E* satisfy t,vgt, # 0, then g - s(v) = s(u). Suppose that
g, h € G and p,v,o0,7 € E* satisfy g-s(v) = s(u) and h-s(1) = s(o).
Then

* . _ /
buVghly 1 o1y v =0V

* * : /
LuUgt Lo Unts = (g0 Vgl nts if o =vo

0 otherwise

Proof. Fix g,h € G and u,v, 7,0 € E*.

tuvgt, 0 = tutswugt, # 0
tuVgtg—1.5wt, # 0
tuvg(tutg=r.5(0)" 7 0
s(w) =g7" - s(p)
g-s(v) = s(p)

P4 U
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Now, suppose v = o/ for some v/. Then

tuugtitoupty = t,ugts et

tuvgt totoupts
= tuvgt;/ts(o)vhtj—
(trvpts)tuvgty)”

= (troptuvgty)” since s(o) = r(p)

gty upts
tuvg(vp-1ty )"t
= Zflﬂ}g (th—l.,,/’l)h—l |/ )*t;k_

_ -1 *
= tuvgvh,1|yl(t7—th71,yl)

(2) = Lughl,1 b pr)

Where the last line is true since (1) implies that s(7) = h™! - r(V/) =
r(h~! - V') because r(V) = s(o).
Now suppose o = vo’. Then

tuugtitounty =t vt t,eupts
= t,Vgtsw)torUnts
= t,vgtupts since s(v) = r(o’)
= tulgorVg),, Unly

(3) = tugo")Vg|,ntr

Where the last line is true since (1) implies that s(u) = g - s(v) =
g-r(c") =r(g-0d’). If neither of the above hypotheses hold, then we
have r(u1) # r(o) and so the product t5t, = tit,u)tr()lo 18 zero, as i)
and t,(s) are then mutually orthogonal projections. This, combined
with equations (2) and (3), gives the result. O

Lemma 3.1.2. Let (G, E) be a self-similar action and let (v,t) be a
Toeplitz representation of (G, E) in a unital C*-algebra B. Then

C*({vg} U{t,}) = span{t, vty - g € G, p,v € E*}

Proof. Define K := span{t, vt} : g € G,p,v € E*}. For the reverse
containment, we see that K C C*({vy}U{t,}). Since C*({v,} U{t,}) is

a C*-algebra, it is complete, so K = span{t, vt} : g € G,p,v € E*} C
C*({vg} U{t,}). For the reverse containment, we see that K contains
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the generating set {v,} U{t,}, for fix ¢ € G and p € E*. Then

vy = E Ly vy

u/' € B0

= ) ) tuugty

u€EY v/ e B0

= g g twvgt, each t, is a projection
u€E0 weR0

And,
t, = t,1

= ) t,lt,

ueE°

= Z t,1t, as each t, is a projection
ueE0

€ K

Further, K is closed under involution in B, and is closed under multi-
plication as proven in the previous lemma. Now K = span{t, vt} g €
G,u,v € E*} is a closed *-subalgebra of B containing the generating
elements of C*({v,} U{t,}), hence C*({v,}U{t,}) C span{t, vt} : g €
G, u,v € E*} and we have established reverse containment. Il

3.2. The Universal C*-algebra.

Theorem 3.2.1. Let (G, E) be a self-similar action. There is a C*-
algebra TC*(G, E) generated by a Toeplitz representation (u,s) which
is universal in the sense that for any other Toeplitz representation (v, t)
in a C*-algebra B, there is a homomorphism m,; : TC*(G,E) — B
satisfying m,(uy) = vy and m,4(s,) = t,. We call this universal C*-
algebra the Toeplitz algebra of (G, E).

Proof. Suppose (G, E) is a self-similar action. Let A be the formal
vector space spanned by finite linear combinations of the form

Z A gbg0 where F' C {(p,g,v) :g-s(v) =s(un)}

(g v)eF
Define a bilinear multiplication on A by

3 _ /

Opghl, 1,710y Hv=ov

— 3 /

Ongw  Oohr = eu(gv’),gloxh,r if o =vo
0 otherwise

And then - extends to a multiplication on A. Define an involution on

A via
( a#,g’l’e,“,!],l’) T a’#yg,l’ergvﬂ

F F
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Then A is a complex *-algebra. Given a Toeplitz representation (v,t)
of (G,E) in a C*-algebra B, there is a *-homomorphism 79, : A —
C*(v,t) defined by 7 (0,4.) = tuugts, since C*(v,t) is precisely the

closed span of elements of this form, as proven in Lemma 3.1.2. For
a € A, define

N(a) := sup{||my,(a)| : (v,t) is a Toeplitz representation of (G, E)}
We note that for each a € A, N(a) is finite:

N(a) = sup{| Za%g,ytuvgt;ﬁH : (v,t) is a Toeplitz representation}

F
(4) < sup{z llaugutuvgty| = (v,t) is a Toeplitz representation}
F
Now,
[tuvgtil® = [tuvgtitvg-1ty]
= ||tuvgt8(l/)vg*1t::||
= ||tutg'8(1/)vgvg*1t;||
= [[tut ]l since g - 5(v) = s(p)
=t
=t
= ltsql
(5) =1

Where the last line is true because t(,,) is a projection. Thus, combining
(4) with (5)W gives

N(a) < SUP{Z |apgu|} = Z |90
F F

Which is a finite sum of finite positive numbers, hence finite. N de-
scends to a C*-norm on the *-algebra A/ker(N): for a + ker(N),b+
ker(N) € A/ker(N), we have

|(a + ker(N))*(a+ ker(N)|| = |la*a+ ker(N)||
= N(a"a)
= sup{||m) (a*a)|}

(v,t)

= sup{||m,,(a)|*}

(v:t)

= sup{Hﬂ'g,t(a)H}Q

(vyt)
= N(a)’
= |la+ ker(N)H2
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(a4 ker(N))(b+ ker(N))|| = |lab+ ker(N)|
= ?;lg{ﬂﬂg,t(ab)ﬂ}
?ilg{\lﬂg,t(a)\!Hﬂg,t(b)H}

sup{||m, ()|} ?BB{HWSJ(&) I3

(v;t)

IN

IN

= N(a)N(b)
(@ + ker(N))[[[[ (b + ker(N))]

so that A/ker(N) is a C*-algebra. We now define families {s,, : p € E*}
and {u, : g € G} iasA/ker(N)

Sp = Opes(u)

Ug = E :91179,9*141

veEERY

These families induce a Toeplitz representation (u, s) of (G, E') in A/ker(N)
(note that it suffices to check the Toeplitz representation axioms in A,
as the quotient map is a homomorphism):

(1) wis a unitary map: The element ) _ o 6y is @ multiplicative
identity. For 0, ,, € A, we have

(Z 91},67v)9u,g,u = Z ev,e,veu7g,u

veERD veERY
= Oypegr Where v =1r(p)

9M7g7y

and

gu,g,u(z ev,e,v) = Z eu,g,uev,em

veE" veEQ
= 60, .., where v =r(v
#397

= 0

M7g7y

Now for g € GG, we have

Ug—1 = E:ev,g*%gw

veEEY

= : : 99—1.1}79—17”

vEEOQ
_ *
= u,
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and

Ug—1Ug = (Z Qv,gfl,gw)(z Hv,g,g*Lv)
- Z Z 91)79—179.1) . (91)/%9_1,”,

vEEY v/ eEY

= E :ev,g‘l79-v99-v,g,g‘1-(9-v)

veEEY

= ) Ougigl o e)e )

veEEY
= § ev,e,v
veE"

and since g € G was arbitrary, the above argument works for
the reverse multiplication by replacing ¢ with g~!. Finally, for
g,h € G,

UgUp = (Z 91)79,971‘1))(2 ev,h,h*Lv)

veEEL veERY

= : : : : 6”7979_1'17 ’ evl7h7h_1'vl
veE0 v/ eEo

= ) Oufg gt gl 1 yhh (g 1)
veEEY

= E :Qv,gh,(gh)*lﬂ
veEEY

_= Ugh

So that u is a unitary homomorphism of G into U(A/ker(N)),
as required.
(2) Considering the family {s, : p € E*}, we have:
(a) For p,v € E*,
SNSV = 9#7675(@ ) 01/7675(”)
= 00,5 0huve,s(v)
= s if r(v) = s(p)
(b) For v,u € E°,
SpSu = ev,e,veu,e,u
= 5v,u01),e,v
with the property that Y 08, = >, cpo Oven = 1.
(c) For u € E*,
SpSu = Osu)enbues)
Os(u).e.s()

= Ss(w



10

(d) Forn € N,v € E°, wesee that 3, (u)—y 5,5/,

is self-adjoint:

Z eueu

()=
|pl=n

*
=v SuS),

and that >,
|

ul=n

Z eu,e Iz

r(p)=
lu|=n

SO Y r(n
Iul n

Now for v € EY,

LACHLAN MACDONALD

= ZT(#):’U Opu.e,0

lul=n lul=n

§ *
eﬂ’euu‘

r(p)=v
|pul=n

Z Opv.e,

r(p)=v
Iul

= (ZT(/.L):U SMS:,)Z since

lul=n

Z Z eu,e,yey,e,u

r(p)=v r(v)=v

lul=n |vj=n

Z 9#8(#)76#

r(p)=v

|pul=n

Z Opsie.n

r(p)=v
Iul

—v SuS), 1s a projection for each v € E° and n € N.

E Qu,e,u v,e,v

r(p)=
|ul=n

Z euev (e-n)

r(p)=
|p|=n

§ O e
=v

|pul=n

2 s

r(p)=
|p|=n
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and

S Z SMSZ) = Z Ov,ew * Ope

r(p)=v r(p)=
|pul=n |pul=n

= Z 91}(6 -u),

r(p)=
|pl=n

= Z euve,u

lul=n

= S“S#

r(p)=v
lul=n

Z sus < 8,

r(p)=
lu|=n

(3) Finally, for g € G and p € E*,

UgSy = E Qv,g,gfl-v'eu,e,s(u)

veE0

= Z 99-1179,119#76:5(/1)

veE0

= 0

so by [4],

g-r(1),g,r(1) 9#@5(#)

Og-1(1)(g-18) 9l we,5 (1)
(6) = eg'mglmsw)

and

Sgulgl, = Og-1e.5(g-11) E :eglwv,g\u,v
veERY

= Z Og-u.e.s(gn) * Qg\wv,gluav
veE0
Og-e:5(9:12) * Ogliu-s(10),1,0-5(0)

0y-pcql,l s (gl (o))

= eg%g\u,su
= UgSy

(gl s(gm)’

So (u, s) as defined is a Toeplitz representation. We now define 7C*(G, E) :=

A/ker(N). For the universal property, let (v, t) be a Toeplitz represen-
tation of (G, E) in a C*-algebra B. Define w,, : TC*(G,E) — B by
Tui(a+ ker(N)) := 70 ,(a), and m,; has the desired property. O
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Lemma 3.2.1. Let (G, E) be a self similar action. Suppose that 7 is
a representation of TC*(G,E) on a Hilbert space H and that p is a
representation of C*(G) on a Hilbert space KC. Then there is a repre-
sentation ™ of TC*(G, E) on H ® K such that

(m x p)(ug) = m(uy) ® plic(g))
and
(mx p)(su) = 7T<3u) ® 1k

Proof. Let (G, E) be a self similar action, let 7 be a representation of
TC*(G, E) on a Hilbert space H and let p be a representation of C*(G)
on a Hilbert space . We define the linear map (7 x p) : TC*(G, E) —
H ® K on the spanning elements of 7C*(G, E) by the formula

(1 X p)(suugs;) = m(suugs,) @ plic(g))

The map is multiplicative and *-preserving because both p and 7 are.
Now (7 X p) is a *-homomorphism from 7C*(G, E) to B(H ® K), and
is thus a representation of 7TC*(G, E) on H® K. We see that for g € G
and p € E*, we have

(mx p)(ug) = (wxp)(Y ] D svugsy)

veEE0 v/ k0

= (mx p)(z Syllg Z Sv)

veERY v/ eEO

= 7D sty Y sw) @ plic(g))

= (Y so)mn(ug)T( D sw) ® plic(g))

= m(uy) @ plic(g))

and
(X)) = (% (Y sulse)
veEEO
= 7D sulsy) @ plic(e))
veEO
= W(Su) ® 1IC
So that (7 X p) is a representation with the desired properties. U

Theorem 3.2.2. Let (G, E) be a self-similar action. Let (u,s) be the
universal representation in TC*(G, E). Then each sy is nonzero, and
there is an injective homomorphism g : TC*(E) — TC*(G, E) such
that mg(ty) = sy for all X € E*. Further, the map g — u, induces an
injective homomorphism . : C*(G) — TC*(G, E).
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Proof. Let (G, E) be a self-similar action and let (u, s) be the universal
representation of (G, E). Consider the Hilbert space (*(E) = span{dy :
A € E*}, where for A € E* 0, : E* — C is the map defined by

oa(p) = {1if)\:u

0 otherwise

We construct a Toeplitz representation (U, S) of (G, E) in B((*(E*))
via

UgOp = Og.p
and

0 otherwise

5, = {% if s(\) = ()

Uy and S, are clearly bounded operators for all g and p, as they map
the spanning set of ¢2(E*) into itself. It has been shown that the
set {S\ : A € E*} is indeed a Toeplitz-Cuntz-Krieger family of E in
B((*(E*)) [2][1], so it remains to show that U is a unitary map and
that the pair (U, S) satisfies axiom (3) in Definition 3.1.1.
Fix g € G. Then for pu,v € E*, we have
(Ug0ulUg0) = (0g.ul0g-1,)

and since p and v were arbitrary, by faithfulness of the action we have

(5g~u|5g~l/) - {

which is precisely the value of (6,]0,), and so U, is an isometry. Fur-
thermore, for g € G we have U;-1U,0, = 0414, = 0, for all p € £,
so that the U, are invertible, hence unitary, with Uy = Ujy-1.
Now, fix ¢ € G and p € E*.
SguUgl,0n = Sgudgln
= Ogm(glur
Og-(uA)
UyS,0x
for all A € E* with r(\) = s(p). For A not satisfying this condition, we
have 7(glu - A) = glu - 7(A) # glu - s(u) = s(g - ), so that
SguUgl, 00 = 0 = UyS,05

lifu=v
0 otherwise

and then
UgSu = 59,4y,
for all g € G and p € E*, and (U, S) is a Toeplitz representation.

The universal property of TC*(G, E) now gives a homomorphism
Y TC*(G,E) — B({*(E*)) such that ¢(u,) = U, and ¥(sy) = Sy for
all g € G and A € E*. In particular, for any A € E*, Sy = 9(s)) # 0,
implying that sy # 0.
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Further, the family {s, : p € E*} is a Toeplitz-Cuntz-Krieger fam-
ily in 7C*(G, E) (contained in condition (2) of the definition of a
Toeplitz representation), so that by the universal property of 7C*(E),
the Toeplitz algebra of E, there is a homomorphism g : TC*(E) —
TC*(G, E) with the property that mg(f)) = s, for all A € E*. Since
each s, is nonzero, ker(mg) = 0, so g is injective.

Finally, to see that TC*(G, E) contains a copy of C*(G), observe
that the map g — u, from G to TC*(G, E) induces a homomorphism
L C*(G) = TC*(G, E) such that t(ig(g9)) = u, for all g € G by the
universal property of C*(G).

Now let 7 be a representation of 7C*(G, E) on some Hilbert space H
and let p be a faithful representation of C*(G) on some Hilbert space K.
By Lemma 3.2.1, there is a representation 7 x p of TC*(G, E) on HRK
such that (7 x p)(uy) = 7(uy)®p(ic(g)). Now by the universal property
of C*(@), there is an injective homomorphism 6 : C*(G) — B(H ® K)
induced by the map ¢g — (7 x p)(u,), which is injective because p is.
Now we have

0(ic(g)) = (7 x p)(uy)
= (7 x p)(elic(g)))

so that ¢ is also injective, as required. Il
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