SELF-SIMILAR ACTIONS OF GROUPS ON GRAPHS

LACHLAN MACDONALD

1. INTRODUCTION

The properties of self-similar actions of groups on sets have been investigated by Laca-Raeburn-Ramagge-Whittaker through their associated Toeplitz and Cuntz-Pimsner algebras [3]. In this project we attempt to generalise the definition of a self-similar action to a group G on a finite directed graph E . We investigate the operator algebraic properties of the resulting structure and deduce that each self-similar action of a group on a finite directed graph has a universal C^* -algebra generated by an isomorphic copy of the Toeplitz graph C^* -algebra of E and an isomorphic copy of the group C^* -algebra of G .

2. Self-similar actions

We begin our investigation by defining a self-similar action of a group on a graph.

Definition 2.0.1. Let E be a finite, directed graph with surjective range map and let G be a group. Denote by E^* the set of all finite paths in E. A self-similar action (G, E) is a faithful action of G on E^* such that

$$
g \cdot r(f) = r(g \cdot f)
$$

for all $g \in G$ and $f \in E^1$ and for every $f \in E^1$ and $g \in G$, $g \cdot f \in E^1$ and there exists unique $g|_f \in G$ with

$$
(g \cdot f\mu) = (g \cdot f)(g|_f \cdot \mu)
$$

for all $\mu \in E^*$ with $r(\mu) = s(f)$

Remark 2.0.1. For $g \in G$ and $f \in E^1$, $g \cdot f = g \cdot r(f) f = (g \cdot r(f))(g \cdot f)$ so that $g|_v := g$ satisfies $g \cdot vf = (g \cdot v)(g|_v \cdot f)$ whenever $v = r(f)$. There is generally no group element which uniquely satisfies this.

Lemma 2.0.1. Let (G, E) be a self-similar action. Then

- (1) For all $g \in G$ and $\mu \in E^*$, $g \cdot \mu \in E^0$ if and only if $\mu \in E^0$
- (2) For every $v \in E^0$ and $g \in G$, $f \mapsto g \cdot f$ is a bijection from $r^{-1}(v)$ to $r^{-1}(g \cdot v)$.
- (3) For all $g \in G$ and $N \in \mathbb{N}{0}$, $\mu \in E^N \Rightarrow g \cdot \mu \in E^N$.

Date: January 2013.

(4) For each $N \in \mathbb{N} \setminus \{0\}$ and $(g, \nu) \in G \times E^N$, there exists unique $q|_{\nu} \in G$ satisfying

$$
g \cdot (\nu \mu) = (g \cdot \nu)(g|_{\nu} \cdot \mu)
$$

- for all $\mu \in E^*$ with $r(\mu) = s(\nu)$.
- (5) For g, $h \in G$ and $\mu, \nu \in E^*$ with $r(\mu) = s(\nu)$, we have (a)

$$
g|_{\nu\mu} = (g|_{\nu})|_{\mu}
$$

(b)

(c)

$$
gh|_{\nu}=g|_{h\cdot\nu}h|_{\nu}
$$

- $g|_{\nu}^{-1} = g^{-1}|_{g \cdot \nu}$ (6) For every $g \in G$ and $N \in \mathbb{N}$, $g: E^N \to E^N$ is bijective.
- *Proof.* (1) Fix $\mu \in E^*$ and $g \in G$. For the forward direction, suppose that $g \cdot \mu \in E^0$. Since r is surjective, $u := g \cdot \mu$ is the range of some edge f. Now $\mu = g^{-1} \cdot g \cdot \mu = g^{-1} \cdot u = g^{-1} \cdot r(f)$ $r(g^{-1} \cdot f) \in E^0$. For the reverse direction, if $\mu \in E^0$, $\mu = r(h)$ for some edge h, and $g \cdot \mu = g \cdot r(h) = r(g \cdot h) \in E^0$.
	- (2) Fix $v \in E^0$ and $g \in G$. For $f, h \in r^{-1}(v)$ such that $g \cdot f = g \cdot h$, we have $f = g^{-1} \cdot g \cdot f = g^{-1} \cdot g \cdot h = h$, hence $f \mapsto g \cdot f$ is injective. For $f \in r^{-1}(g \cdot v)$, $f = g \cdot g^{-1} \cdot f$ and $r(f) = g \cdot v \Rightarrow r(g^{-1} \cdot f) = v$, so that $f \mapsto g \cdot f$ is surjective.
	- (3) Fix $g \in G$ and $N \in \mathbb{N}{0}$. If $N = 0$, then $g \cdot \mu \in E^0$ by (1). If $N = 1$, then $g \cdot \mu \in E^1$ by definition of a self-similar action. Now suppose that $g \cdot \mu \in E^{N-1}$ whenever μ^{N-1} . Then for $\mu \in E^N$,

$$
g \cdot \mu = (g \cdot \mu_1)(g|_{\mu_1} \cdot \mu_2 \dots \mu_N) \in E^N
$$

(4) Fix $N \in \mathbb{N} \setminus \{0\}$ and $(g, \nu) \in G \times E^N$. If $r(\mu) = s(\nu)$, then

$$
g \cdot \nu\mu = (g \cdot \nu) \dots (g|_{\nu_1 \dots |\nu_N} \cdot \mu)
$$

so that $g|_{\nu} := g|_{\nu_1}|_{\nu_2} \dots |_{\nu_N}$ has the desired property. For uniqueness, observe that when $\mu \in E^1$, we know that $g|_{\mu}$ uniquely satisfies the desired property by definition of a self-similar action. Suppose now that whenever $\alpha \in E^{N-1}$ and $g \cdot (\alpha \mu) = (g \cdot \alpha)(h \cdot \mu)$ for all μ with $r(\mu) = s(\alpha)$, we have $h = g|_{\alpha}$. Now fix $\nu \in E^N$, and suppose $g \cdot (\nu \mu) = (g \cdot \nu)(h \cdot \mu)$ for all μ with $r(\mu) = s(\nu)$. We must show that $h = q|_{\nu}$. We have

$$
g \cdot \nu\mu = (g \cdot \nu_1)(g|_{\nu_1} \cdot (\nu_2...\nu_N)\mu)
$$

= $(g \cdot \nu_1)(g|_{\nu_1} \cdot (\nu_2...\nu_N))(g|_{\nu_1}|_{\nu_2...\nu_N} \cdot \mu)$

and

$$
(g \cdot \nu)(h \cdot \nu) = (g \cdot \nu_1)(g|_{\nu_1} \cdot (\nu_2 ... \nu_N))(h \cdot \mu)
$$

so

 $(g \cdot \nu_1)(g|_{\nu_1} \cdot (\nu_2 ... \nu_N))(g|_{\nu_1}|_{\nu_2 ... \nu_N} \cdot \mu) = (g \cdot \nu_1)(g|_{\nu_1} \cdot (\nu_2 ... \nu_N))(h \cdot \mu)$

for all μ with $r(\mu) = s(\nu)$ gives $h = g|_{\nu}$. (5) Fix $g, h \in G$ and $\mu, \nu \in E^*$ with $r(\mu) = s(\nu)$. (a) If $|\nu\mu|=0$, then the assertion reduces to $q=q$. Suppose $|\nu\mu| > 0$. If $r(\lambda) = s(\mu)$, then $=$ $(a, v)(a, v)$

$$
g \cdot \nu \mu \lambda = (g \cdot \nu)(g|_{\nu} \cdot \mu \lambda)
$$

=
$$
(g \cdot \nu)(g|_{\nu} \cdot \mu)(g|_{\nu}|_{\mu} \cdot \lambda)
$$

=
$$
(g \cdot \nu \mu)(g|_{\nu}|_{\mu} \cdot \lambda)
$$

and

$$
g \cdot \nu \mu \lambda = (g \cdot \nu \mu)(g|_{\nu \mu} \cdot \lambda)
$$

so that $g|_{\nu\mu} = g|_{\nu}|_{\mu}$ by (4).

(b) If $|\nu| = 0$, then assertion reduces to $q = q$. Suppose $|\nu| > 0$. If $r(\lambda) = s(\mu)$, then

$$
g \cdot h \cdot \nu \lambda = g \cdot (h \cdot \nu)(h|_{\nu} \cdot \lambda)
$$

= $(g \cdot (h \cdot \nu))(g|_{h \cdot \nu} \cdot h|_{\nu} \cdot \lambda)$
= $(gh \cdot \nu)(g|_{h \cdot \nu}h|_{\nu} \cdot \lambda)$
= $(gh \cdot \nu \lambda)$
= $(gh \cdot \nu)(gh|_{\nu} \cdot \lambda)$

so that $gh|_{\nu} = g|_{h \cdot \nu} h|_{\nu}$ by (4).

(c)

$$
\nu \lambda = g^{-1} \cdot g \cdot \nu \lambda
$$

= $g^{-1} \cdot (g \cdot \nu)(g|_{\nu} \lambda)$
= $\nu (g^{-1}|_{g \cdot \nu} g|_{\nu} \lambda)$

so that $g|_{\nu}^{-1} = g^{-1}|_{g \cdot \nu}$ by uniqueness of inverses in the group and (4).

(6) We showed in (2) that the map is injective. Since E^N is finite, (3) and the pigeonhole principle imply that the map is bijective. \Box

3. Operator-algebraic properties

Having defined a self-similar action of a group on a graph and proved some of the characteristics of such an action, we now investigate the properties of such structures in the context of C^* -algebras.

3.1. Representations. Representations are what we will use to embed the structure of self-similar actions in a C^* -algebra.

Definition 3.1.1. Let (G, E) be a self-similar action. A Toeplitz representation (v, t) of (G, E) in a unitary C^* -algebra B is a pair of maps $v: G \to B$ and $t: E^* \to B$ with the following properties:

- (1) v is a unitary representation of G in B .
- (2) The set $\{t_\mu : \mu \in E^*\}$ has

4 LACHLAN MACDONALD

- (a) $\{t_v : v \in E^0\}$ are mutually orthogonal projections, with $\sum_{v \in E^0} t_v = 1_B,$
- (b) $\overline{t_{\mu}} t_{\nu} = t_{\mu\nu}$ whenever $s(\mu) = r(\nu)$,
- (c) $t^*_{\mu} t_{\mu} = t_{s(\mu)}$ for all $\mu \in E^*$,
- (d) For all $n \in \mathbb{N}$ and $v \in E^0$,

$$
\sum_{\substack{r(\mu)=v\\|\mu|=n}}t_\mu t^*_\mu\leq t_v
$$

(3)
$$
v_g t_\mu = t_{g \cdot \mu} v_{g|\mu}
$$
 for all $g \in G$ and $\mu \in E^*$.

Remark 3.1.1. The definition of a Toeplitz representation of a selfsimilar action encodes the information contained about the group and graph. Condition (1) says a quotient copy of the group is contained in the unitaries of the enveloping C^* -algebra. Condition (2) expresses the same properties carried by the Toeplitz algebra of the graph E. Condition (3) expresses the structure of the action itself.

Lemma 3.1.1. Let (G, E) be a self-similar action and let (v, t) be a Toeplitz representation of (G, E) in a unital C^{*}-algebra B. If $g \in G$ and $\mu, \nu \in E^*$ satisfy $t_{\mu}v_g t_{\nu} \neq 0$, then $g \cdot s(\nu) = s(\mu)$. Suppose that $g, h \in G$ and $\mu, \nu, \sigma, \tau \in \overline{E}^*$ satisfy $g \cdot s(\nu) = s(\mu)$ and $h \cdot s(\tau) = s(\sigma)$. Then

$$
t_{\mu}v_{g}t_{\nu}^{*}t_{\sigma}v_{h}t_{\tau}^{*} = \begin{cases} t_{\mu}v_{gh|_{h^{-1}\cdot\nu'}}t_{\tau(h^{-1}\cdot\nu')}^{*} & \text{if } \nu = \sigma\nu'\\ t_{\mu(g\cdot\sigma')}v_{g|_{\sigma'}h}t_{\tau}^{*} & \text{if } \sigma = \nu\sigma'\\ 0 & \text{otherwise} \end{cases}
$$

Proof. Fix $g, h \in G$ and $\mu, \nu, \tau, \sigma \in E^*$.

$$
t_{\mu}v_{g}t_{\nu}^{*} \neq 0 \Rightarrow t_{\mu}t_{s(\mu)}v_{g}t_{\nu}^{*} \neq 0
$$

\n
$$
\Rightarrow t_{\mu}v_{g}t_{g^{-1} \cdot s(\mu)}t_{\nu}^{*} \neq 0
$$

\n
$$
\Rightarrow t_{\mu}v_{g}(t_{\nu}t_{g^{-1} \cdot s(\mu)})^{*} \neq 0
$$

\n
$$
\Rightarrow s(\nu) = g^{-1} \cdot s(\mu)
$$

\n(1)
\n
$$
\Rightarrow g \cdot s(\nu) = s(\mu)
$$

Now, suppose $\nu = \sigma \nu'$ for some ν' . Then

$$
t_{\mu}v_{g}t_{\nu}^{*}t_{\sigma}v_{h}t_{\tau}^{*} = t_{\mu}v_{g}t_{\sigma\nu}^{*}t_{\sigma}v_{h}t_{\tau}^{*}
$$
\n
$$
= t_{\mu}v_{g}t_{\nu}^{*}t_{\sigma}^{*}t_{\sigma}v_{h}t_{\tau}^{*}
$$
\n
$$
= t_{\mu}v_{g}t_{\nu}^{*}t_{s(\sigma)}v_{h}t_{\tau}^{*}
$$
\n
$$
= (t_{\tau}v_{h}^{*}t_{s(\sigma)}t_{\nu'}v_{g}^{*}t_{\nu'}^{*})^{*}
$$
\n
$$
= (t_{\tau}v_{h}^{*}t_{\nu'}v_{g}^{*}t_{\mu}^{*})^{*} \text{ since } s(\sigma) = r(\mu)
$$
\n
$$
= t_{\mu}v_{g}t_{\nu'}^{*}v_{h}t_{\tau}^{*}
$$
\n
$$
= t_{\mu}v_{g}(v_{h^{-1}t_{\nu'}})^{*}t_{\tau}^{*}
$$
\n
$$
= t_{\mu}v_{g}(t_{h^{-1} \cdot \nu'}v_{h^{-1}|_{\nu'}})^{*}t_{\tau}^{*}
$$
\n
$$
= t_{\mu}v_{g}v_{h^{-1}|_{\nu'}}^{-1}(t_{\tau}t_{h^{-1} \cdot \nu'})^{*}
$$
\n
$$
= t_{\mu}v_{g}h_{h^{-1} \cdot \nu'}t_{\tau(h^{-1} \cdot \nu')}
$$

Where the last line is true since (1) implies that $s(\tau) = h^{-1} \cdot r(\nu') =$ $r(h^{-1} \cdot \nu')$ because $r(\nu') = s(\sigma)$.

Now suppose $\sigma = \nu \sigma'$. Then

(2)

(3)
\n
$$
t_{\mu}v_{g}t_{\nu}^{*}t_{\sigma}v_{h}t_{\tau}^{*} = t_{\mu}v_{g}t_{\nu}^{*}t_{\nu\sigma'}v_{h}t_{\tau}^{*}
$$
\n
$$
= t_{\mu}v_{g}t_{s(\nu)}t_{\sigma'}v_{h}t_{\tau}^{*}
$$
\n
$$
= t_{\mu}v_{g}t_{\sigma'}v_{h}t_{\tau}^{*}
$$
\n
$$
= t_{\mu}t_{g\cdot\sigma'}v_{g|_{\sigma'}}v_{h}t_{\tau}^{*}
$$
\n
$$
= t_{\mu(g\cdot\sigma')}v_{g|_{\sigma'}h}t_{\tau}^{*}
$$

Where the last line is true since (1) implies that $s(\mu) = g \cdot s(\nu) =$ $g \cdot r(\sigma') = r(g \cdot \sigma')$. If neither of the above hypotheses hold, then we have $r(\mu) \neq r(\sigma)$ and so the product $t^*_{\nu} t_{\sigma} = t^*_{\nu} t_{r(\nu)} t_{r(\sigma)} t_{\sigma}$ is zero, as $t_{r(\nu)}$ and $t_{r(\sigma)}$ are then mutually orthogonal projections. This, combined with equations (2) and (3), gives the result. \square

Lemma 3.1.2. Let (G, E) be a self-similar action and let (v, t) be a Toeplitz representation of (G, E) in a unital C^* -algebra B. Then

$$
C^*(\{v_g\}\cup\{t_\mu\})=\overline{span}\{t_\mu v_g t_\nu^* : g\in G, \mu,\nu\in E^*\}
$$

Proof. Define $K := \text{span}\{t_{\mu}v_g t_{\nu}^* : g \in G, \mu, \nu \in E^*\}$. For the reverse containment, we see that $K \subset C^*(\{v_g\} \cup \{t_\mu\})$. Since $C^*(\{v_g\} \cup \{t_\mu\})$ is a C^{*}-algebra, it is complete, so $\overline{K} = \overline{span} \{t_{\mu}v_g t_{\nu}^* : g \in G, \mu, \nu \in E^* \} \subset$ $C^*(\{v_g\} \cup \{t_\mu\})$. For the reverse containment, we see that K contains the generating set $\{v_g\} \cup \{t_\mu\}$, for fix $g \in G$ and $\mu \in E^*$. Then

$$
v_g = \sum_{u' \in E^0} t_{u'} v_g
$$

=
$$
\sum_{u \in E^0} \sum_{u' \in E^0} t_{u'} v_g t_u
$$

=
$$
\sum_{u \in E^0} \sum_{u' \in E^0} t_{u'} v_g t_u^* \text{ each } t_u \text{ is a projection}
$$

$$
\in K
$$

And,

$$
t_{\mu} = t_{\mu}1
$$

=
$$
\sum_{u \in E^{0}} t_{\mu}1t_{u}
$$

=
$$
\sum_{u \in E^{0}} t_{\mu}1t_{u}^{*}
$$
 as each t_{u} is a projection
 $\in K$

Further, K is closed under involution in B , and is closed under multiplication as proven in the previous lemma. Now $\overline{K} = \overline{span} \{ t_{\mu} v_g t_{\nu}^* : g \in$ $G, \mu, \nu \in E^*$ is a closed *-subalgebra of B containing the generating elements of $C^*(\{v_g\} \cup \{t_\mu\})$, hence $C^*(\{v_g\} \cup \{t_\mu\}) \subset \overline{span} \{t_\mu v_g t_\nu^* : g \in$ $G, \mu, \nu \in E^*$ and we have established reverse containment.

3.2. The Universal C^* -algebra.

Theorem 3.2.1. Let (G, E) be a self-similar action. There is a C^* algebra $TC^*(G, E)$ generated by a Toeplitz representation (u, s) which is universal in the sense that for any other Toeplitz representation (v, t) in a C^{*}-algebra B, there is a homomorphism $\pi_{v,t} : \mathcal{T} C^*(G,E) \to B$ satisfying $\pi_{v,t}(u_g) = v_g$ and $\pi_{v,t}(s_\mu) = t_\mu$. We call this universal C^* algebra the Toeplitz algebra of (G, E) .

Proof. Suppose (G, E) is a self-similar action. Let A be the formal vector space spanned by finite linear combinations of the form

$$
\sum_{(\mu,g,\nu)\in F} a_{\mu,g,\nu} \theta_{\mu,g,\nu}
$$
 where $F \subset \{(\mu,g,\nu) : g \cdot s(\nu) = s(\mu)\}$

Define a bilinear multiplication on A by

$$
\theta_{\mu,g,\nu} \cdot \theta_{\sigma,h,\tau} = \begin{cases} \theta_{\mu,gh|_{h^{-1} \cdot \nu'},\tau(h^{-1} \cdot \nu')} & \text{if } \nu = \sigma \nu' \\ \theta_{\mu(g \cdot \sigma'),g|_{\sigma'}h,\tau} & \text{if } \sigma = \nu \sigma' \\ 0 & \text{otherwise} \end{cases}
$$

And then \cdot extends to a multiplication on A. Define an involution on A via

$$
(\sum_F a_{\mu,g,\nu} \theta_{\mu,g,\nu})^* := \sum_F \overline{a_{\mu,g,\nu}} \theta_{\nu,g,\mu}
$$

Then A is a complex *-algebra. Given a Toeplitz representation (v, t) of (G, E) in a C^{*}-algebra B, there is a ^{*}-homomorphism $\pi_{v,t}^0 : A \to$ $C^*(v,t)$ defined by $\pi^0_{v,t}(\theta_{\mu,g,\nu}) := t_\mu u_g t^*_\nu$, since $C^*(v,t)$ is precisely the closed span of elements of this form, as proven in Lemma 3.1.2. For $a \in A$, define

 $N(a) := \sup \{ \| \pi_{v,t}^0(a) \| : (v, t) \text{ is a Toeplitz representation of } (G, E) \}$ We note that for each $a \in A$, $N(a)$ is finite:

$$
N(a) = \sup \{ \| \sum_{F} a_{\mu,g,\nu} t_{\mu} v_g t_{\nu}^* \| : (v,t) \text{ is a Toeplitz representation} \}
$$

(4)
$$
\leq \sup \{ \sum_{F} ||a_{\mu,g,\nu} t_{\mu} v_g t_{\nu}^*|| : (v,t) \text{ is a Toeplitz representation} \}
$$

Now,

$$
||t_{\mu}v_{g}t_{\nu}^{*}||^{2} = ||t_{\mu}v_{g}t_{\nu}^{*}t_{\nu}v_{g^{-1}}t_{\mu}^{*}||
$$

\n
$$
= ||t_{\mu}v_{g}t_{s(\nu)}v_{g^{-1}}t_{\mu}^{*}||
$$

\n
$$
= ||t_{\mu}t_{g.s(\nu)}v_{g}v_{g^{-1}}t_{\mu}^{*}||
$$

\n
$$
= ||t_{\mu}t_{\mu}^{*}|| \text{ since } g \cdot s(\nu) = s(\mu)
$$

\n
$$
= ||t_{\mu}||^{2}
$$

\n
$$
= ||t_{\mu}^{*}t_{\mu}||
$$

\n
$$
= ||t_{s(\mu)}^{*}||
$$

\n(5)
\n(5)

Where the last line is true because $t_{s(\mu)}$ is a projection. Thus, combining (4) with (5) W gives

$$
N(a) \le \sup \{ \sum_F |a_{\mu,g,\nu}| \} = \sum_F |a_{\mu,g,\nu}|
$$

Which is a finite sum of finite positive numbers, hence finite. N descends to a C^* -norm on the *-algebra $\overline{A/ker(N)}$: for $a + ker(N), b +$ $ker(N) \in \overline{A/ker(N)}$, we have

$$
\begin{aligned}\n\|(a + \ker(N))^*(a + \ker(N))\| &= \|a^*a + \ker(N)\| \\
&= N(a^*a) \\
&= \sup_{(v,t)} \{ \|\pi_{v,t}^0(a^*a)\| \} \\
&= \sup_{(v,t)} \{ \|\pi_{v,t}^0(a)\|^2 \} \\
&= \sup_{(v,t)} \{ \|\pi_{v,t}^0(a)\| \}^2 \\
&= N(a)^2 \\
&= \|a + \ker(N)\|^2\n\end{aligned}
$$

and

$$
\begin{aligned}\n\|(a+ker(N))(b+ker(N))\| &= \|ab+ker(N)\| \\
&= \sup_{(v,t)} \{ \|\pi_{v,t}^0(ab)\| \} \\
&\leq \sup_{(v,t)} \{ \|\pi_{v,t}^0(a)\| \|\pi_{v,t}^0(b)\| \} \\
&\leq \sup_{(v,t)} \{ \|\pi_{v,t}^0(a)\| \} \sup_{(v,t)} \{ \|\pi_{v,t}^0(a)\| \} \\
&= N(a)N(b) \\
&= \|(a+ker(N))\| \|(b+ker(N))\| \end{aligned}
$$

so that $\overline{A/ker(N)}$ is a C^* -algebra. We now define families $\{s_\mu : \mu \in E^*\}$ and $\{u_g : g \in G\}$ ias $\overline{A/ker(N)}$

$$
s_{\mu} := \theta_{\mu,e,s(\mu)}
$$

$$
u_g := \sum_{v \in E^0} \theta_{v,g,g^{-1} \cdot v}
$$

These families induce a Toeplitz representation (u, s) of (G, E) in $\overline{A/ker(N)}$ (note that it suffices to check the Toeplitz representation axioms in A , as the quotient map is a homomorphism):

(1) u is a unitary map: The element $\sum_{v \in E^0} \theta_{v,e,v}$ is a multiplicative identity. For $\theta_{\mu,g,\nu} \in A$, we have

$$
\begin{aligned}\n(\sum_{v \in E^0} \theta_{v,e,v}) \theta_{\mu,g,\nu} &= \sum_{v \in E^0} \theta_{v,e,v} \theta_{\mu,g,\nu} \\
&= \theta_{v\mu,eg,\nu} \text{ where } v = r(\mu) \\
&= \theta_{\mu,g,\nu}\n\end{aligned}
$$

and

$$
\theta_{\mu,g,\nu}(\sum_{v \in E^0} \theta_{v,e,v}) = \sum_{v \in E^0} \theta_{\mu,g,\nu} \theta_{v,e,v}
$$

$$
= \theta_{\mu,g,v\nu} \text{ where } v = r(\nu)
$$

$$
= \theta_{\mu,g,\nu}
$$

Now for $g \in G$, we have

$$
u_{g^{-1}} = \sum_{v \in E^0} \theta_{v,g^{-1},g \cdot v}
$$

=
$$
\sum_{v \in E^0} \theta_{g^{-1} \cdot v,g^{-1},v}
$$

=
$$
u_g^*
$$

and

$$
u_{g^{-1}}u_g = \left(\sum_{v \in E^0} \theta_{v,g^{-1},g\cdot v}\right)\left(\sum_{v \in E^0} \theta_{v,g,g^{-1}\cdot v}\right)
$$

\n
$$
= \sum_{v \in E^0} \sum_{v' \in E^0} \theta_{v,g^{-1},g\cdot v} \cdot \theta_{v',g,g^{-1}\cdot v'}
$$

\n
$$
= \sum_{v \in E^0} \theta_{v,g^{-1},g\cdot v} \theta_{g\cdot v,g,g^{-1}\cdot (g\cdot v)}
$$

\n
$$
= \sum_{v \in E^0} \theta_{v,g^{-1}g|_{g^{-1}\cdot (g)}\cdot g^{-1}\cdot (g\cdot v)(g^{-1}\cdot (g\cdot v))}
$$

\n
$$
= \sum_{v \in E^0} \theta_{v,e,v}
$$

and since $g \in G$ was arbitrary, the above argument works for the reverse multiplication by replacing g with g^{-1} . Finally, for $g, h \in G$,

$$
u_g u_h = (\sum_{v \in E^0} \theta_{v,g,g^{-1} \cdot v})(\sum_{v \in E^0} \theta_{v,h,h^{-1} \cdot v})
$$

=
$$
\sum_{v \in E^0} \sum_{v' \in E^0} \theta_{v,g,g^{-1} \cdot v} \cdot \theta_{v',h,h^{-1} \cdot v'}
$$

=
$$
\sum_{v \in E^0} \theta_{v(g \cdot (g^{-1} \cdot v)),g|_{g^{-1} \cdot v}h,h^{-1} \cdot (g^{-1} \cdot v)}
$$

=
$$
\sum_{v \in E^0} \theta_{v,gh,(gh)^{-1} \cdot v}
$$

=
$$
u_{gh}
$$

So that u is a unitary homomorphism of G into $\mathcal{U}(\overline{A/ker(N)})$, as required.

(2) Considering the family $\{s_{\mu} : \mu \in E^*\}$, we have: (a) For $\mu, \nu \in E^*$,

$$
s_{\mu}s_{\nu} = \theta_{\mu,e,s(\mu)} \cdot \theta_{\nu,e,s(\nu)}
$$

= $\delta_{(\nu),s(\mu)}\theta_{\mu\nu,e,s(\nu)}$
= $s_{\mu\nu}$ if $r(\nu) = s(\mu)$

(b) For $v, u \in E^0$,

$$
s_v s_u = \theta_{v,e,v} \theta_{u,e,u}
$$

= $\delta_{v,u} \theta_{v,e,v}$

with the property that $\sum_{v \in E^0} s_v = \sum_{v \in E^0} \theta_{v,e,v} = 1$. (c) For $\mu \in E^*$,

$$
s_{\mu}^{*} s_{\mu} = \theta_{s(\mu),e,\mu} \theta_{\mu,e,s(\mu)}
$$

= $\theta_{s(\mu),e,s(\mu)}$
= $s_{s(\mu)}$

(d) For $n \in \mathbb{N}$, $v \in E^0$, we see that $\sum_{r(\mu)=v}$ $|\mu|=n$ $s_{\mu}s_{\mu}^* = \sum_{r(\mu)=v}$ $|\mu|=n$ $\theta_{\mu,e,\mu}$ is self-adjoint:

$$
\begin{array}{rcl} (\displaystyle\sum_{\substack{r(\mu)=v\\ |\mu|=n}} \theta_{\mu,e,\mu})^{*} & = & \displaystyle\sum_{\substack{r(\mu)=v\\ |\mu|=n}} \theta_{\mu,e,\mu}^{*} \\ & = & \displaystyle\sum_{\substack{r(\mu)=v\\ |\mu|=n}} \theta_{\mu,e,\mu} \end{array}
$$

 $\Big($

and that
$$
\sum_{\substack{r(\mu)=v \ (\mu|=n}} s_{\mu} s_{\mu}^* = (\sum_{\substack{r(\mu)=v \ (\mu|=n}} s_{\mu} s_{\mu}^*)^2
$$
 since

$$
\begin{array}{rcl} (\displaystyle\sum_{\substack{r(\mu)=v}}\theta_{\mu,e,\mu})^2 & = & \displaystyle\sum_{\substack{r(\mu)=v}}\sum_{\substack{r(\nu)=v}}\theta_{\mu,e,\mu}\theta_{\nu,e,\nu} \\ |\mu|=n & |\nu|=n \\ & = & \displaystyle\sum_{\substack{r(\mu)=v \\ |\mu|=n}}\theta_{\mu s(\mu),e,\mu} \\ & = & \displaystyle\sum_{\substack{r(\mu)=v \\ |\mu|=n}}\theta_{\mu,e,\mu} \end{array}
$$

So $\sum_{r(\mu)=v}$ $|\mu|=n$ $s_{\mu}s_{\mu}^*$ is a projection for each $v \in E^0$ and $n \in \mathbb{N}$. Now for $v \in E^0$,

$$
\begin{array}{rcl}\n(\displaystyle\sum_{\substack{r(\mu)=v\\|\mu|=n}} s_{\mu} s_{\mu}^{*}) s_{v} & = & \displaystyle\sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu} \cdot \theta_{v,e,v} \\
& = & \displaystyle\sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,v(e\cdot\mu)} \\
& = & \displaystyle\sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu} \\
& = & \displaystyle\sum_{\substack{r(\mu)=v\\|\mu|=n}} s_{\mu} s_{\mu}^{*}\n\end{array}
$$

$$
\quad\text{and}\quad
$$

$$
s_v(\sum_{\substack{r(\mu)=v \\ |\mu|=n}} s_{\mu} s_{\mu}^*) = \sum_{\substack{r(\mu)=v \\ |\mu|=n}} \theta_{v,e,v} \cdot \theta_{\mu,e,\mu}
$$

$$
= \sum_{\substack{r(\mu)=v \\ |\mu|=n \\ |\mu|=n}} \theta_{v(e\cdot\mu),e,\mu}
$$

$$
= \sum_{\substack{r(\mu)=v \\ |\mu|=n}} \theta_{\mu,e,\mu}
$$

$$
= \sum_{\substack{r(\mu)=v \\ |\mu|=n}} s_{\mu} s_{\mu}^*
$$

so by $[4]$,

$$
\sum_{\substack{r(\mu)=v\\|\mu|=n}} s_{\mu} s_{\mu}^* \le s_v
$$

(3) Finally, for $g \in G$ and $\mu \in E^*$,

$$
u_g s_\mu = \sum_{v \in E^0} \theta_{v,g,g^{-1} \cdot v} \cdot \theta_{\mu,e,s(\mu)}
$$

$$
= \sum_{v \in E^0} \theta_{g \cdot v,g,v} \theta_{\mu,e,s(\mu)}
$$

$$
= \theta_{g \cdot r(\mu),g,r(\mu)} \cdot \theta_{\mu,e,s(\mu)}
$$

$$
= \theta_{g \cdot r(\mu)(g \cdot \mu),g|\mu,e,s(\mu)}
$$

$$
(6)
$$

$$
= \theta_{g \cdot \mu,g|\mu,s(\mu)}
$$

and

$$
s_{g \cdot \mu} u_{g|\mu} = \theta_{g \cdot \mu, e, s(g \cdot \mu)} \sum_{v \in E^0} \theta_{g|\mu \cdot v, g|\mu, v}
$$

\n
$$
= \sum_{v \in E^0} \theta_{g \cdot \mu, e, s(g \cdot \mu)} \cdot \theta_{g|\mu \cdot v, g|\mu, v}
$$

\n
$$
= \theta_{g \cdot \mu, e, s(g \cdot \mu)} \cdot \theta_{g|\mu \cdot s(\mu), g|\mu, s(\mu)}
$$

\n
$$
= \theta_{g \cdot \mu, e g|\mu|_{(g|\mu^{-1} \cdot s(g \cdot \mu))}, s(\mu)(g|\mu^{-1} \cdot s(g \cdot \mu))}
$$

\n
$$
= \theta_{g \cdot \mu, g|\mu, s_{\mu}}
$$

\n
$$
= u_g s_{\mu}
$$

So (u, s) as defined is a Toeplitz representation. We now define $TC^*(G, E) :=$ $A/ker(N)$. For the universal property, let (v, t) be a Toeplitz representation of (G, E) in a C^{*}-algebra B. Define $\pi_{v,t} : \mathcal{T} C^*(G, E) \to B$ by $\pi_{v,t}(a + \ker(N)) := \pi_{v,t}^0(a)$, and $\pi_{v,t}$ has the desired property.

Lemma 3.2.1. Let (G, E) be a self similar action. Suppose that π is a representation of $TC^*(G, E)$ on a Hilbert space H and that ρ is a representation of $C^*(G)$ on a Hilbert space K. Then there is a representation π of $TC^*(G, E)$ on $\mathcal{H} \otimes \mathcal{K}$ such that

$$
(\pi \times \rho)(u_g) = \pi(u_g) \otimes \rho(i_G(g))
$$

and

$$
(\pi \times \rho)(s_{\mu}) = \pi(s_{\mu}) \otimes 1_{\mathcal{K}}
$$

Proof. Let (G, E) be a self similar action, let π be a representation of $TC^*(G, E)$ on a Hilbert space H and let ρ be a representation of $C^*(G)$ on a Hilbert space K. We define the linear map $(\pi \times \rho) : \mathcal{T} C^*(G, E) \to$ $\mathcal{H} \otimes \mathcal{K}$ on the spanning elements of $\mathcal{T} C^*(G,E)$ by the formula

$$
(\pi \times \rho)(s_\mu u_g s_\nu^*) := \pi(s_\mu u_g s_\nu^*) \otimes \rho(i_G(g))
$$

The map is multiplicative and *-preserving because both ρ and π are. Now $(\pi \times \rho)$ is a *-homomorphism from $TC^*(G, E)$ to $\mathcal{B}(\mathcal{H} \otimes \mathcal{K})$, and is thus a representation of $TC^*(G, E)$ on $\mathcal{H} \otimes \mathcal{K}$. We see that for $g \in G$ and $\mu \in E^*$, we have

$$
(\pi \times \rho)(u_g) = (\pi \times \rho)(\sum_{v \in E^0} \sum_{v' \in E^0} s_v u_g s_{v'})
$$

$$
= (\pi \times \rho)(\sum_{v \in E^0} s_v u_g \sum_{v' \in E^0} s_{v'})
$$

$$
= \pi(\sum_{v \in E^0} s_v u_g \sum_{v' \in E^0} s_{v'}) \otimes \rho(i_G(g))
$$

$$
= \pi(\sum_{v \in E^0} s_v) \pi(u_g) \pi(\sum_{v' \in E^0} s_{v'}) \otimes \rho(i_G(g))
$$

$$
= \pi(u_g) \otimes \rho(i_G(g))
$$

and

$$
(\pi \times \rho)(s_{\mu}) = (\pi \times \rho)(\sum_{v \in E^0} s_{\mu} 1s_v)
$$

$$
= \pi(\sum_{v \in E^0} s_{\mu} 1s_v) \otimes \rho(i_G(e))
$$

$$
= \pi(s_{\mu}) \otimes 1_K
$$

So that $(\pi \times \rho)$ is a representation with the desired properties. \Box

Theorem 3.2.2. Let (G, E) be a self-similar action. Let (u, s) be the universal representation in $TC^*(G, E)$. Then each s_λ is nonzero, and there is an injective homomorphism $\pi_E : \mathcal{T} C^*(E) \to \mathcal{T} C^*(G,E)$ such that $\pi_E(t_\lambda) = s_\lambda$ for all $\lambda \in E^*$. Further, the map $g \mapsto u_g$ induces an injective homomorphism $\iota: C^*(G) \to \mathcal{T} C^*(G,E)$.

Proof. Let (G, E) be a self-similar action and let (u, s) be the universal representation of (G, E) . Consider the Hilbert space $\ell^2(E) = \overline{span} \{ \delta_\lambda :$ $\lambda \in E^*$, where for $\lambda \in E^*$, $\delta_{\lambda}: E^* \to \mathbb{C}$ is the map defined by

$$
\delta_{\lambda}(\mu) = \begin{cases} 1 \text{ if } \lambda = \mu \\ 0 \text{ otherwise} \end{cases}
$$

We construct a Toeplitz representation (U, S) of (G, E) in $\mathcal{B}(\ell^2(E^*))$ via

 $U_a\delta_{\mu}:=\delta_{a\cdot\mu}$

and

$$
S_{\lambda}\delta_{\mu} := \begin{cases} \delta_{\lambda\mu} & \text{if } s(\lambda) = r(\mu) \\ 0 & \text{otherwise} \end{cases}
$$

 U_g and S_μ are clearly bounded operators for all g and μ , as they map the spanning set of $\ell^2(E^*)$ into itself. It has been shown that the set $\{S_\lambda : \lambda \in E^*\}$ is indeed a Toeplitz-Cuntz-Krieger family of E in $\mathcal{B}(\ell^2(E^*))$ [2][1], so it remains to show that U is a unitary map and that the pair (U, S) satisfies axiom (3) in Definition 3.1.1.

Fix $g \in G$. Then for $\mu, \nu \in E^*$, we have

$$
(U_g \delta_\mu | U_g \delta_\nu) = (\delta_{g \cdot \mu} | \delta_{g \cdot \nu})
$$

and since μ and ν were arbitrary, by faithfulness of the action we have

$$
(\delta_{g\cdot\mu}|\delta_{g\cdot\nu}) = \begin{cases} 1 \text{ if } \mu = \nu \\ 0 \text{ otherwise} \end{cases}
$$

which is precisely the value of $(\delta_{\mu}|\delta_{\nu})$, and so U_q is an isometry. Furthermore, for $g \in G$ we have $U_{g^{-1}}U_g \delta_\mu = \delta_{g^{-1} \cdot g \cdot \mu} = \delta_\mu$ for all $\mu \in E^*$, so that the U_g are invertible, hence unitary, with $U_g^* = U_{g^{-1}}$.

Now, fix $g \in G$ and $\mu \in E^*$.

$$
S_{g \cdot \mu} U_{g|\mu} \delta_{\lambda} = S_{g \cdot \mu} \delta_{g|\mu} \cdot \lambda
$$

= $\delta_{(g \cdot \mu)(g|\mu} \cdot \lambda$
= $\delta_{g \cdot (\mu \lambda)}$
= $U_g S_\mu \delta_\lambda$

for all $\lambda \in E^*$ with $r(\lambda) = s(\mu)$. For λ not satisfying this condition, we have $r(g|_{\mu} \cdot \lambda) = g|_{\mu} \cdot r(\lambda) \neq g|_{\mu} \cdot s(\mu) = s(g \cdot \mu)$, so that

$$
S_{g \cdot \mu} U_{g|\mu} \delta_{\lambda} = 0 = U_g S_{\mu} \delta_{\lambda}
$$

and then

$$
U_g S_\mu = S_{g \cdot \mu} U_{g|_\mu}
$$

for all $g \in G$ and $\mu \in E^*$, and (U, S) is a Toeplitz representation.

The universal property of $TC^*(G, E)$ now gives a homomorphism $\psi: \mathcal{T} C^*(G,E) \to \mathcal{B}(\ell^2(E^*))$ such that $\psi(u_g) = U_g$ and $\psi(s_\lambda) = S_\lambda$ for all $g \in G$ and $\lambda \in E^*$. In particular, for any $\lambda \in E^*$, $S_\lambda = \psi(s_\lambda) \neq 0$, implying that $s_{\lambda} \neq 0$.

14 LACHLAN MACDONALD

Further, the family $\{s_{\mu} : \mu \in E^*\}$ is a Toeplitz-Cuntz-Krieger family in $TC^*(G, E)$ (contained in condition (2) of the definition of a Toeplitz representation), so that by the universal property of $TC^*(E)$, the Toeplitz algebra of E, there is a homomorphism $\pi_E : \mathcal{T} C^*(E) \to$ $TC^*(G, E)$ with the property that $\pi_E(t_\lambda) = s_\lambda$ for all $\lambda \in E^*$. Since each s_{λ} is nonzero, $ker(\pi_E) = 0$, so π_E is injective.

Finally, to see that $TC^*(G, E)$ contains a copy of $C^*(G)$, observe that the map $g \mapsto u_g$ from G to $TC^*(G, E)$ induces a homomorphism $\iota: C^*(G) \to \mathcal{T} C^*(G, E)$ such that $\iota(i_G(g)) = u_g$ for all $g \in G$ by the universal property of $C^*(G)$.

Now let π be a representation of $TC^*(G, E)$ on some Hilbert space $\mathcal H$ and let ρ be a faithful representation of $C^*(G)$ on some Hilbert space \mathcal{K} . By Lemma 3.2.1, there is a representation $\pi \times \rho$ of $TC^*(G, E)$ on $\mathcal{H} \otimes \mathcal{K}$ such that $(\pi \times \rho)(u_q) = \pi(u_q) \otimes \rho(i_G(q))$. Now by the universal property of $C^*(G)$, there is an injective homomorphism $\theta: C^*(G) \to \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ induced by the map $g \mapsto (\pi \times \rho)(u_g)$, which is injective because ρ is. Now we have

$$
\begin{array}{rcl} \theta(i_G(g)) & = & (\pi \times \rho)(u_g) \\ & = & (\pi \times \rho)(\iota(i_G(g))) \end{array}
$$

so that ι is also injective, as required. \Box

REFERENCES

- 1. A.A. Huef, M. Laca, I. Raeburn, and A. Sims, Kms states on c^* -algebras associated to higher-rank graph algebras, arXiv:1212.6811v1 [math.OA].
- 2. $\frac{1}{2}$ Kms states on the c*-algebras of finite graphs, $arXiv:1205.2194$ [math.OA].
- 3. M. Laca, I. Raeburn, J. Ramagge, and M.F. Whittaker, Equilibrium states on the cuntz-pimsner algebras of self-similar actions, arXiv:1301.4722 [math.OA].
- 4. I. Raeburn, Graph algebras, Conference Board of the Mathematical Sciences, 2005.