SELF-SIMILAR ACTIONS OF GROUPS ON GRAPHS

LACHLAN MACDONALD

1. INTRODUCTION

The properties of self-similar actions of groups on sets have been investigated by Laca-Raeburn-Ramagge-Whittaker through their associated Toeplitz and Cuntz-Pimsner algebras [3]. In this project we attempt to generalise the definition of a self-similar action to a group G on a finite directed graph E. We investigate the operator algebraic properties of the resulting structure and deduce that each self-similar action of a group on a finite directed graph has a universal C^* -algebra generated by an isomorphic copy of the Toeplitz graph C^* -algebra of E and an isomorphic copy of the group C^* -algebra of G.

2. Self-similar actions

We begin our investigation by defining a self-similar action of a group on a graph.

Definition 2.0.1. Let E be a finite, directed graph with surjective range map and let G be a group. Denote by E^* the set of all finite paths in E. A self-similar action (G, E) is a faithful action of G on E^* such that

$$g \cdot r(f) = r(g \cdot f)$$

for all $g \in G$ and $f \in E^1$ and for every $f \in E^1$ and $g \in G$, $g \cdot f \in E^1$ and there exists unique $g|_f \in G$ with

$$(g \cdot f\mu) = (g \cdot f)(g|_f \cdot \mu)$$

for all $\mu \in E^*$ with $r(\mu) = s(f)$

Remark 2.0.1. For $g \in G$ and $f \in E^1$, $g \cdot f = g \cdot r(f)f = (g \cdot r(f))(g \cdot f)$ so that $g|_v := g$ satisfies $g \cdot vf = (g \cdot v)(g|_v \cdot f)$ whenever v = r(f). There is generally no group element which uniquely satisfies this.

Lemma 2.0.1. Let (G, E) be a self-similar action. Then

- (1) For all $g \in G$ and $\mu \in E^*$, $g \cdot \mu \in E^0$ if and only if $\mu \in E^0$
- (2) For every $v \in E^0$ and $g \in G$, $f \mapsto g \cdot f$ is a bijection from $r^{-1}(v)$ to $r^{-1}(g \cdot v)$.
- (3) For all $g \in G$ and $N \in \mathbb{N}\{0\}$, $\mu \in E^N \Rightarrow g \cdot \mu \in E^N$.

Date: January 2013.

(4) For each $N \in \mathbb{N} \setminus \{0\}$ and $(g, \nu) \in G \times E^N$, there exists unique $g|_{\nu} \in G$ satisfying

$$g \cdot (\nu \mu) = (g \cdot \nu)(g|_{\nu} \cdot \mu)$$

- for all $\mu \in E^*$ with $r(\mu) = s(\nu)$.
- (5) For $g, h \in G$ and $\mu, \nu \in E^*$ with $r(\mu) = s(\nu)$, we have (a)

$$g|_{\nu\mu} = (g|_{\nu})|_{\mu}$$

(b)

(c)

$$gh|_{\nu} = g|_{h \cdot \nu}h|$$

(6) For every
$$g \in G$$
 and $N \in \mathbb{N}$, $g : E^N \to E^N$ is bijective.

- Proof. (1) Fix $\mu \in E^*$ and $g \in G$. For the forward direction, suppose that $g \cdot \mu \in E^0$. Since r is surjective, $u := g \cdot \mu$ is the range of some edge f. Now $\mu = g^{-1} \cdot g \cdot \mu = g^{-1} \cdot u = g^{-1} \cdot r(f) = r(g^{-1} \cdot f) \in E^0$. For the reverse direction, if $\mu \in E^0$, $\mu = r(h)$ for some edge h, and $g \cdot \mu = g \cdot r(h) = r(g \cdot h) \in E^0$.
 - (2) Fix $v \in E^0$ and $g \in G$. For $f, h \in r^{-1}(v)$ such that $g \cdot f = g \cdot h$, we have $f = g^{-1} \cdot g \cdot f = g^{-1} \cdot g \cdot h = h$, hence $f \mapsto g \cdot f$ is injective. For $f \in r^{-1}(g \cdot v), f = g \cdot g^{-1} \cdot f$ and $r(f) = g \cdot v \Rightarrow r(g^{-1} \cdot f) = v$, so that $f \mapsto g \cdot f$ is surjective.
 - (3) Fix $g \in G$ and $N \in \mathbb{N}\{0\}$. If N = 0, then $g \cdot \mu \in E^0$ by (1). If N = 1, then $g \cdot \mu \in E^1$ by definition of a self-similar action. Now suppose that $g \cdot \mu \in E^{N-1}$ whenever μ^{N-1} . Then for $\mu \in E^N$,

$$g \cdot \mu = (g \cdot \mu_1)(g|_{\mu_1} \cdot \mu_2 \dots \mu_N) \in E^N$$

(4) Fix $N \in \mathbb{N} \setminus \{0\}$ and $(g, \nu) \in G \times E^N$. If $r(\mu) = s(\nu)$, then

$$g \cdot \nu \mu = (g \cdot \nu) \dots (g|_{\nu_1 \dots}|_{\nu_N} \cdot \mu)$$

so that $g|_{\nu} := g|_{\nu_1}|_{\nu_2...}|_{\nu_N}$ has the desired property. For uniqueness, observe that when $\mu \in E^1$, we know that $g|_{\mu}$ uniquely satisfies the desired property by definition of a self-similar action. Suppose now that whenever $\alpha \in E^{N-1}$ and $g \cdot (\alpha \mu) = (g \cdot \alpha)(h \cdot \mu)$ for all μ with $r(\mu) = s(\alpha)$, we have $h = g|_{\alpha}$. Now fix $\nu \in E^N$, and suppose $g \cdot (\nu \mu) = (g \cdot \nu)(h \cdot \mu)$ for all μ with $r(\mu) = s(\nu)$. We must show that $h = g|_{\nu}$. We have

$$g \cdot \nu \mu = (g \cdot \nu_1)(g|_{\nu_1} \cdot (\nu_2 ... \nu_N)\mu) = (g \cdot \nu_1)(g|_{\nu_1} \cdot (\nu_2 ... \nu_N))(g|_{\nu_1}|_{\nu_2 ... \nu_N} \cdot \mu)$$

and

$$(g \cdot \nu)(h \cdot \nu) = (g \cdot \nu_1)(g|_{\nu_1} \cdot (\nu_2 \dots \nu_N))(h \cdot \mu)$$

 \mathbf{SO}

$$(g \cdot \nu_1)(g|_{\nu_1} \cdot (\nu_2 \dots \nu_N))(g|_{\nu_1}|_{\nu_2 \dots \nu_N} \cdot \mu) = (g \cdot \nu_1)(g|_{\nu_1} \cdot (\nu_2 \dots \nu_N))(h \cdot \mu)$$

 $\mathbf{2}$

for all μ with $r(\mu) = s(\nu)$ gives $h = g|_{\nu}$. (5) Fix $g, h \in G$ and $\mu, \nu \in E^*$ with $r(\mu) = s(\nu)$. (a) If $|\nu\mu| = 0$, then the assertion reduces to g = g. Suppose $|\nu\mu| > 0$. If $r(\lambda) = s(\mu)$, then $g \cdot \nu\mu\lambda = (g \cdot \nu)(g|_{\nu} \cdot \mu\lambda)$ $= (g \cdot \nu)(g|_{\nu} \cdot \mu)(g|_{\nu}|_{\mu} \cdot \lambda)$

$$= (g \cdot \nu)(g|_{\nu} \cdot \mu)(g|_{\nu}|_{\mu} \cdot \lambda)$$
$$= (g \cdot \nu\mu)(g|_{\nu}|_{\mu} \cdot \lambda)$$

and

$$g \cdot \nu \mu \lambda = (g \cdot \nu \mu)(g|_{\nu \mu} \cdot \lambda)$$

so that $g|_{\nu\mu} = g|_{\nu}|_{\mu}$ by (4).

(b) If $|\nu| = 0$, then assertion reduces to g = g. Suppose $|\nu| > 0$. If $r(\lambda) = s(\mu)$, then

$$g \cdot h \cdot \nu \lambda = g \cdot (h \cdot \nu)(h|_{\nu} \cdot \lambda)$$

= $(g \cdot (h \cdot \nu))(g|_{h \cdot \nu} \cdot h|_{\nu} \cdot \lambda)$
= $(gh \cdot \nu)(g|_{h \cdot \nu}h|_{\nu} \cdot \lambda)$
= $(gh \cdot \nu\lambda)$
= $(gh \cdot \nu)(gh|_{\nu} \cdot \lambda)$

so that $gh|_{\nu} = g|_{h \cdot \nu} h|_{\nu}$ by (4).

(c)

$$\nu\lambda = g^{-1} \cdot g \cdot \nu\lambda$$

= $g^{-1} \cdot (g \cdot \nu)(g|_{\nu}\lambda)$
= $\nu(g^{-1}|_{g \cdot \nu}g|_{\nu}\lambda)$

so that $g|_{\nu}^{-1} = g^{-1}|_{g \cdot \nu}$ by uniqueness of inverses in the group and (4).

(6) We showed in (2) that the map is injective. Since E^N is finite, (3) and the pigeonhole principle imply that the map is bijective.

3. Operator-algebraic properties

Having defined a self-similar action of a group on a graph and proved some of the characteristics of such an action, we now investigate the properties of such structures in the context of C^* -algebras.

3.1. Representations. Representations are what we will use to embed the structure of self-similar actions in a C^* -algebra.

Definition 3.1.1. Let (G, E) be a self-similar action. A Toeplitz representation (v, t) of (G, E) in a unitary C^* -algebra B is a pair of maps $v: G \to B$ and $t: E^* \to B$ with the following properties:

- (1) v is a unitary representation of G in B.
- (2) The set $\{t_{\mu} : \mu \in E^*\}$ has

LACHLAN MACDONALD

- (a) $\{t_v : v \in E^0\}$ are mutually orthogonal projections, with $\sum_{v \in E^0} t_v = 1_B$,
- (b) $\vec{t}_{\mu} t_{\nu} = t_{\mu\nu}$ whenever $s(\mu) = r(\nu)$,
- (c) $t^*_{\mu}t_{\mu} = t_{s(\mu)}$ for all $\mu \in E^*$,
- (d) For all $n \in \mathbb{N}$ and $v \in E^0$,

$$\sum_{\substack{r(\mu)=v\\|\mu|=n}} t_{\mu} t_{\mu}^* \le t_v$$

(3)
$$v_g t_\mu = t_{g \cdot \mu} v_{g|\mu}$$
 for all $g \in G$ and $\mu \in E^*$.

Remark 3.1.1. The definition of a Toeplitz representation of a selfsimilar action encodes the information contained about the group and graph. Condition (1) says a quotient copy of the group is contained in the unitaries of the enveloping C^* -algebra. Condition (2) expresses the same properties carried by the Toeplitz algebra of the graph E. Condition (3) expresses the structure of the action itself.

Lemma 3.1.1. Let (G, E) be a self-similar action and let (v, t) be a Toeplitz representation of (G, E) in a unital C^* -algebra B. If $g \in G$ and $\mu, \nu \in E^*$ satisfy $t_{\mu}v_gt_{\nu} \neq 0$, then $g \cdot s(\nu) = s(\mu)$. Suppose that $g, h \in G$ and $\mu, \nu, \sigma, \tau \in E^*$ satisfy $g \cdot s(\nu) = s(\mu)$ and $h \cdot s(\tau) = s(\sigma)$. Then

$$t_{\mu}v_{g}t_{\nu}^{*}t_{\sigma}v_{h}t_{\tau}^{*} = \begin{cases} t_{\mu}v_{gh|_{h^{-1}\cdot\nu'}}t_{\tau(h^{-1}\cdot\nu')}^{*} & \text{if }\nu = \sigma\nu'\\ t_{\mu(g\cdot\sigma')}v_{g|_{\sigma'}h}t_{\tau}^{*} & \text{if }\sigma = \nu\sigma'\\ 0 & \text{otherwise} \end{cases}$$

Proof. Fix $g, h \in G$ and $\mu, \nu, \tau, \sigma \in E^*$.

(1)

$$t_{\mu}v_{g}t_{\nu}^{*} \neq 0 \implies t_{\mu}t_{s(\mu)}v_{g}t_{\nu}^{*} \neq 0$$

$$\Rightarrow t_{\mu}v_{g}t_{g^{-1}\cdot s(\mu)}t_{\nu}^{*} \neq 0$$

$$\Rightarrow t_{\mu}v_{g}(t_{\nu}t_{g^{-1}\cdot s(\mu)})^{*} \neq 0$$

$$\Rightarrow s(\nu) = g^{-1}\cdot s(\mu)$$

$$\Rightarrow g\cdot s(\nu) = s(\mu)$$

Now, suppose $\nu = \sigma \nu'$ for some ν' . Then

$$\begin{split} t_{\mu}v_{g}t_{\nu}^{*}t_{\sigma}v_{h}t_{\tau}^{*} &= t_{\mu}v_{g}t_{\nu\nu'}^{*}t_{\sigma}v_{h}t_{\tau}^{*} \\ &= t_{\mu}v_{g}t_{\nu'}^{*}t_{\sigma}^{*}t_{\sigma}v_{h}t_{\tau}^{*} \\ &= t_{\mu}v_{g}t_{\nu'}^{*}t_{s(\sigma)}v_{h}t_{\tau}^{*} \\ &= (t_{\tau}v_{h}^{*}t_{s(\sigma)}t_{\nu'}v_{g}^{*}t_{\nu'}^{*})^{*} \\ &= (t_{\tau}v_{h}^{*}t_{\nu'}v_{g}^{*}t_{\mu}^{*})^{*} \quad \text{since } s(\sigma) = r(\mu) \\ &= t_{\mu}v_{g}t_{\nu'}^{*}v_{h}t_{\tau}^{*} \\ &= t_{\mu}v_{g}(v_{h^{-1}}t_{\nu'})^{*}t_{\tau}^{*} \\ &= t_{\mu}v_{g}(t_{h^{-1}\cdot\nu'}v_{h^{-1}|_{\nu'}})^{*}t_{\tau}^{*} \\ &= t_{\mu}v_{g}v_{h^{-1}|_{\nu'}}^{-1}(t_{\tau}t_{h^{-1}\cdot\nu'})^{*} \end{split}$$

Where the last line is true since (1) implies that $s(\tau) = h^{-1} \cdot r(\nu') = r(h^{-1} \cdot \nu')$ because $r(\nu') = s(\sigma)$.

Now suppose $\sigma = \nu \sigma'$. Then

(2)

(3)

$$t_{\mu}v_{g}t_{\nu}^{*}t_{\sigma}v_{h}t_{\tau}^{*} = t_{\mu}v_{g}t_{\nu\sigma'}v_{h}t_{\tau}^{*}$$

$$= t_{\mu}v_{g}t_{s(\nu)}t_{\sigma'}v_{h}t_{\tau}^{*}$$

$$= t_{\mu}v_{g}t_{\sigma'}v_{h}t_{\tau}^{*}$$

$$= t_{\mu}t_{g\cdot\sigma'}v_{g|_{\sigma'}}v_{h}t_{\tau}^{*}$$

Where the last line is true since (1) implies that $s(\mu) = g \cdot s(\nu) = g \cdot r(\sigma') = r(g \cdot \sigma')$. If neither of the above hypotheses hold, then we have $r(\mu) \neq r(\sigma)$ and so the product $t_{\nu}^* t_{\sigma} = t_{\nu}^* t_{r(\nu)} t_{r(\sigma)} t_{\sigma}$ is zero, as $t_{r(\nu)}$ and $t_{r(\sigma)}$ are then mutually orthogonal projections. This, combined with equations (2) and (3), gives the result.

Lemma 3.1.2. Let (G, E) be a self-similar action and let (v, t) be a Toeplitz representation of (G, E) in a unital C^* -algebra B. Then

$$C^*(\{v_g\} \cup \{t_\mu\}) = \overline{span}\{t_\mu v_g t_\nu^* : g \in G, \mu, \nu \in E^*\}$$

Proof. Define $K := span\{t_{\mu}v_gt_{\nu}^* : g \in G, \mu, \nu \in E^*\}$. For the reverse containment, we see that $K \subset C^*(\{v_g\} \cup \{t_{\mu}\})$. Since $C^*(\{v_g\} \cup \{t_{\mu}\})$ is a C^* -algebra, it is complete, so $\overline{K} = \overline{span}\{t_{\mu}v_gt_{\nu}^* : g \in G, \mu, \nu \in E^*\} \subset C^*(\{v_g\} \cup \{t_{\mu}\})$. For the reverse containment, we see that K contains

the generating set $\{v_g\} \cup \{t_\mu\}$, for fix $g \in G$ and $\mu \in E^*$. Then

$$v_g = \sum_{u' \in E^0} t_{u'} v_g$$

=
$$\sum_{u \in E^0} \sum_{u' \in E^0} t_{u'} v_g t_u$$

=
$$\sum_{u \in E^0} \sum_{u' \in E^0} t_{u'} v_g t_u^* \text{ each } t_u \text{ is a projection}$$

 $\in K$

And,

$$t_{\mu} = t_{\mu} 1$$

= $\sum_{u \in E^{0}} t_{\mu} 1 t_{u}$
= $\sum_{u \in E^{0}} t_{\mu} 1 t_{u}^{*}$ as each t_{u} is a projection
 $\in K$

Further, K is closed under involution in B, and is closed under multiplication as proven in the previous lemma. Now $\overline{K} = \overline{span}\{t_{\mu}v_{g}t_{\nu}^{*}: g \in G, \mu, \nu \in E^{*}\}$ is a closed *-subalgebra of B containing the generating elements of $C^{*}(\{v_{g}\} \cup \{t_{\mu}\})$, hence $C^{*}(\{v_{g}\} \cup \{t_{\mu}\}) \subset \overline{span}\{t_{\mu}v_{g}t_{\nu}^{*}: g \in G, \mu, \nu \in E^{*}\}$ and we have established reverse containment. \Box

3.2. The Universal C^* -algebra.

Theorem 3.2.1. Let (G, E) be a self-similar action. There is a C^* algebra $\mathcal{T}C^*(G, E)$ generated by a Toeplitz representation (u, s) which is universal in the sense that for any other Toeplitz representation (v, t)in a C^* -algebra B, there is a homomorphism $\pi_{v,t} : \mathcal{T}C^*(G, E) \to B$ satisfying $\pi_{v,t}(u_g) = v_g$ and $\pi_{v,t}(s_\mu) = t_\mu$. We call this universal C^* algebra the Toeplitz algebra of (G, E).

Proof. Suppose (G, E) is a self-similar action. Let A be the formal vector space spanned by finite linear combinations of the form

$$\sum_{(g,\nu)\in F} a_{\mu,g,\nu}\theta_{\mu,g,\nu} \text{ where } F \subset \{(\mu,g,\nu): g \cdot s(\nu) = s(\mu)\}$$

Define a bilinear multiplication on A by

 $(\mu$

$$\theta_{\mu,g,\nu} \cdot \theta_{\sigma,h,\tau} = \begin{cases} \theta_{\mu,gh|_{h^{-1} \cdot \nu'},\tau(h^{-1} \cdot \nu')} & \text{if } \nu = \sigma \nu' \\ \theta_{\mu(g \cdot \sigma'),g|_{\sigma'}h,\tau} & \text{if } \sigma = \nu \sigma' \\ 0 & \text{otherwise} \end{cases}$$

And then \cdot extends to a multiplication on A. Define an involution on A via

$$\left(\sum_{F} a_{\mu,g,\nu} \theta_{\mu,g,\nu}\right)^* := \sum_{F} \overline{a_{\mu,g,\nu}} \theta_{\nu,g,\mu}$$

Then A is a complex *-algebra. Given a Toeplitz representation (v,t) of (G, E) in a C*-algebra B, there is a *-homomorphism $\pi_{v,t}^0 : A \to C^*(v,t)$ defined by $\pi_{v,t}^0(\theta_{\mu,g,\nu}) := t_{\mu}u_g t_{\nu}^*$, since $C^*(v,t)$ is precisely the closed span of elements of this form, as proven in Lemma 3.1.2. For $a \in A$, define

 $N(a) := \sup\{\|\pi_{v,t}^0(a)\| : (v,t) \text{ is a Toeplitz representation of } (G,E)\}$ We note that for each $a \in A$, N(a) is finite:

$$N(a) = \sup\{\|\sum_{F} a_{\mu,g,\nu} t_{\mu} v_{g} t_{\nu}^{*}\| : (v,t) \text{ is a Toeplitz representation}\}$$

(4)
$$\leq \sup\{\sum_{F} \|a_{\mu,g,\nu}t_{\mu}v_{g}t_{\nu}^{*}\| : (v,t) \text{ is a Toeplitz representation}\}$$

Now,

(5)

$$\begin{aligned} \|t_{\mu}v_{g}t_{\nu}^{*}\|^{2} &= \|t_{\mu}v_{g}t_{\nu}^{*}t_{\nu}v_{g^{-1}}t_{\mu}^{*}\| \\ &= \|t_{\mu}v_{g}t_{s(\nu)}v_{g^{-1}}t_{\mu}^{*}\| \\ &= \|t_{\mu}t_{g\cdot s(\nu)}v_{g}v_{g^{-1}}t_{\mu}^{*}\| \\ &= \|t_{\mu}t_{\mu}^{*}\| \operatorname{since} g \cdot s(\nu) = s(\mu) \\ &= \|t_{\mu}\|^{2} \\ &= \|t_{\mu}^{*}t_{\mu}\| \\ &= \|t_{s(\mu)}\| \\ &= 1 \end{aligned}$$

Where the last line is true because $t_{s(\mu)}$ is a projection. Thus, combining (4) with (5)W gives

$$N(a) \le \sup\{\sum_{F} |a_{\mu,g,\nu}|\} = \sum_{F} |a_{\mu,g,\nu}|$$

Which is a finite sum of finite positive numbers, hence finite. N descends to a C^* -norm on the *-algebra $\overline{A/ker(N)}$: for $a + ker(N), b + ker(N) \in \overline{A/ker(N)}$, we have

$$\begin{aligned} \|(a + ker(N))^*(a + ker(N)\| &= \|a^*a + ker(N)\| \\ &= N(a^*a) \\ &= \sup_{(v,t)} \{\|\pi^0_{v,t}(a^*a)\|\} \\ &= \sup_{(v,t)} \{\|\pi^0_{v,t}(a)\|^2\} \\ &= \sup_{(v,t)} \{\|\pi^0_{v,t}(a)\|\}^2 \\ &= N(a)^2 \\ &= \|a + ker(N)\|^2 \end{aligned}$$

and

$$\begin{aligned} \|(a + ker(N))(b + ker(N))\| &= \|ab + ker(N)\| \\ &= \sup_{(v,t)} \{\|\pi^0_{v,t}(ab)\|\} \\ &\leq \sup_{(v,t)} \{\|\pi^0_{v,t}(a)\|\|\pi^0_{v,t}(b)\|\} \\ &\leq \sup_{(v,t)} \{\|\pi^0_{v,t}(a)\|\} \sup_{(v,t)} \{\|\pi^0_{v,t}(a)\|\} \\ &= N(a)N(b) \\ &= \|(a + ker(N))\|\|(b + ker(N))\| \end{aligned}$$

so that $\overline{A/ker(N)}$ is a C^* -algebra. We now define families $\{s_{\mu} : \mu \in E^*\}$ and $\{u_g : g \in G\}$ ias $\overline{A/ker(N)}$

$$s_{\mu} := \theta_{\mu,e,s(\mu)}$$
$$u_g := \sum_{v \in E^0} \theta_{v,g,g^{-1} \cdot v}$$

These families induce a Toeplitz representation (u, s) of (G, E) in $\overline{A/ker(N)}$ (note that it suffices to check the Toeplitz representation axioms in A, as the quotient map is a homomorphism):

(1) u is a unitary map: The element $\sum_{v \in E^0} \theta_{v,e,v}$ is a multiplicative identity. For $\theta_{\mu,g,\nu} \in A$, we have

$$(\sum_{v \in E^0} \theta_{v,e,v}) \theta_{\mu,g,\nu} = \sum_{v \in E^0} \theta_{v,e,v} \theta_{\mu,g,\nu}$$
$$= \theta_{v\mu,eg,\nu} \text{ where } v = r(\mu)$$
$$= \theta_{\mu,g,\nu}$$

and

$$\begin{aligned} \theta_{\mu,g,\nu} (\sum_{v \in E^0} \theta_{v,e,v}) &= \sum_{v \in E^0} \theta_{\mu,g,\nu} \theta_{v,e,v} \\ &= \theta_{\mu,g,v\nu} \text{ where } v = r(\nu) \\ &= \theta_{\mu,g,\nu} \end{aligned}$$

Now for $g \in G$, we have

$$u_{g^{-1}} = \sum_{v \in E^0} \theta_{v,g^{-1},g \cdot v}$$
$$= \sum_{v \in E^0} \theta_{g^{-1} \cdot v,g^{-1},v}$$
$$= u_g^*$$

and

$$\begin{split} u_{g^{-1}}u_{g} &= (\sum_{v \in E^{0}} \theta_{v,g^{-1},g \cdot v}) (\sum_{v \in E^{0}} \theta_{v,g,g^{-1} \cdot v}) \\ &= \sum_{v \in E^{0}} \sum_{v' \in E^{0}} \theta_{v,g^{-1},g \cdot v} \cdot \theta_{v',g,g^{-1} \cdot v'} \\ &= \sum_{v \in E^{0}} \theta_{v,g^{-1},g \cdot v} \theta_{g \cdot v,g,g^{-1} \cdot (g \cdot v)} \\ &= \sum_{v \in E^{0}} \theta_{v,g^{-1}g|_{g^{-1} \cdot (g)},g^{-1} \cdot (g \cdot v)(g^{-1} \cdot (g \cdot v))} \\ &= \sum_{v \in E^{0}} \theta_{v,e,v} \end{split}$$

and since $g \in G$ was arbitrary, the above argument works for the reverse multiplication by replacing g with g^{-1} . Finally, for $g, h \in G$,

$$u_g u_h = \left(\sum_{v \in E^0} \theta_{v,g,g^{-1} \cdot v}\right) \left(\sum_{v \in E^0} \theta_{v,h,h^{-1} \cdot v}\right)$$
$$= \sum_{v \in E^0} \sum_{v' \in E^0} \theta_{v,g,g^{-1} \cdot v} \cdot \theta_{v',h,h^{-1} \cdot v'}$$
$$= \sum_{v \in E^0} \theta_{v(g \cdot (g^{-1} \cdot v)),g|_{g^{-1} \cdot v}h,h^{-1} \cdot (g^{-1} \cdot v)}$$
$$= \sum_{v \in E^0} \theta_{v,gh,(gh)^{-1} \cdot v}$$
$$= u_{gh}$$

So that u is a unitary homomorphism of G into $\mathcal{U}(\overline{A/ker(N)})$, as required.

(2) Considering the family $\{s_{\mu} : \mu \in E^*\}$, we have: (a) For $\mu, \nu \in E^*$,

$$s_{\mu}s_{\nu} = \theta_{\mu,e,s(\mu)} \cdot \theta_{\nu,e,s(\nu)}$$

= $\delta_{(\nu),s(\mu)}\theta_{\mu\nu,e,s(\nu)}$
= $s_{\mu\nu}$ if $r(\nu) = s(\mu)$

(b) For $v, u \in E^0$,

$$s_v s_u = \theta_{v,e,v} \theta_{u,e,u}$$
$$= \delta_{v,u} \theta_{v,e,v}$$

with the property that $\sum_{v \in E^0} s_v = \sum_{v \in E^0} \theta_{v,e,v} = 1.$ (c) For $\mu \in E^*$,

$$s_{\mu}^{*}s_{\mu} = \theta_{s(\mu),e,\mu}\theta_{\mu,e,s(\mu)}$$
$$= \theta_{s(\mu),e,s(\mu)}$$
$$= s_{s(\mu)}$$

(d) For $n \in \mathbb{N}$, $v \in E^0$, we see that $\sum_{\substack{r(\mu)=v \ |\mu|=n}} s_{\mu}s_{\mu}^* = \sum_{\substack{r(\mu)=v \ |\mu|=n}} \theta_{\mu,e,\mu}$ is self-adjoint:

$$\begin{split} & (\sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu})^* = \sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu}^* \\ & = \sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu} \end{split}$$

(

and that
$$\sum_{\substack{r(\mu)=v \ |\mu|=n}} s_{\mu}s_{\mu}^* = (\sum_{\substack{r(\mu)=v \ |\mu|=n}} s_{\mu}s_{\mu}^*)^2$$
 since

$$(\sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu})^2 = \sum_{\substack{r(\mu)=v\\|\mu|=n}} \sum_{\substack{r(\nu)=v\\|\mu|=n}} \theta_{\mu,e,\mu}$$
$$= \sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu}$$
$$= \sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu}$$

So $\sum_{\substack{r(\mu)=v\\ |\mu|=n}} s_{\mu}s_{\mu}^{*}$ is a projection for each $v \in E^{0}$ and $n \in \mathbb{N}$. Now for $v \in E^{0}$,

$$(\sum_{\substack{r(\mu)=v\\|\mu|=n}} s_{\mu}s_{\mu}^{*})s_{v} = \sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu} \cdot \theta_{v,e,v}$$
$$= \sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu}$$
$$= \sum_{\substack{r(\mu)=v\\|\mu|=n}} s_{\mu}s_{\mu}^{*}$$
$$= \sum_{\substack{r(\mu)=v\\|\mu|=n}} s_{\mu}s_{\mu}^{*}$$

$$s_{v}\left(\sum_{\substack{r(\mu)=v\\|\mu|=n}} s_{\mu}s_{\mu}^{*}\right) = \sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{v,e,v} \cdot \theta_{\mu,e,\mu}$$
$$= \sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{v(e\cdot\mu),e,\mu}$$
$$= \sum_{\substack{r(\mu)=v\\|\mu|=n}} \theta_{\mu,e,\mu}$$
$$= \sum_{\substack{r(\mu)=v\\|\mu|=n}} s_{\mu}s_{\mu}^{*}$$

so by [4],

$$\sum_{\substack{r(\mu)=v\\|\mu|=n}} s_{\mu} s_{\mu}^* \le s_v$$

(3) Finally, for $g \in G$ and $\mu \in E^*$,

$$u_{g}s_{\mu} = \sum_{v \in E^{0}} \theta_{v,g,g^{-1} \cdot v} \cdot \theta_{\mu,e,s(\mu)}$$
$$= \sum_{v \in E^{0}} \theta_{g \cdot v,g,v} \theta_{\mu,e,s(\mu)}$$
$$= \theta_{g \cdot r(\mu),g,r(\mu)} \cdot \theta_{\mu,e,s(\mu)}$$
$$= \theta_{g \cdot r(\mu)(g \cdot \mu),g|_{\mu}e,s(\mu)}$$
$$= \theta_{g \cdot \mu,g|_{\mu},s(\mu)}$$

and

(6)

$$s_{g \cdot \mu} u_{g|\mu} = \theta_{g \cdot \mu, e, s(g \cdot \mu)} \sum_{v \in E^0} \theta_{g|\mu \cdot v, g|\mu, v}$$

$$= \sum_{v \in E^0} \theta_{g \cdot \mu, e, s(g \cdot \mu)} \cdot \theta_{g|\mu \cdot v, g|\mu, v}$$

$$= \theta_{g \cdot \mu, e, s(g \cdot \mu)} \cdot \theta_{g|\mu \cdot s(\mu), g|\mu, s(\mu)}$$

$$= \theta_{g \cdot \mu, eg|\mu|_{(g|\mu^{-1} \cdot s(g \cdot \mu))}, s(\mu)(g|\mu^{-1} \cdot s(g \cdot \mu))}$$

$$= \theta_{g \cdot \mu, g|\mu, s\mu}$$

$$= u_g s_\mu$$

So (u, s) as defined is a Toeplitz representation. We now define $\mathcal{T}C^*(G, E) := \overline{A/ker(N)}$. For the universal property, let (v, t) be a Toeplitz representation of (G, E) in a C^* -algebra B. Define $\pi_{v,t} : \mathcal{T}C^*(G, E) \to B$ by $\pi_{v,t}(a + ker(N)) := \pi_{v,t}^0(a)$, and $\pi_{v,t}$ has the desired property. \Box

Lemma 3.2.1. Let (G, E) be a self similar action. Suppose that π is a representation of $\mathcal{T}C^*(G, E)$ on a Hilbert space \mathcal{H} and that ρ is a representation of $C^*(G)$ on a Hilbert space \mathcal{K} . Then there is a representation π of $\mathcal{T}C^*(G, E)$ on $\mathcal{H} \otimes \mathcal{K}$ such that

$$(\pi \times \rho)(u_g) = \pi(u_g) \otimes \rho(i_G(g))$$

and

$$(\pi \times \rho)(s_{\mu}) = \pi(s_{\mu}) \otimes 1_{\mathcal{K}}$$

Proof. Let (G, E) be a self similar action, let π be a representation of $\mathcal{T}C^*(G, E)$ on a Hilbert space \mathcal{H} and let ρ be a representation of $C^*(G)$ on a Hilbert space \mathcal{K} . We define the linear map $(\pi \times \rho) : \mathcal{T}C^*(G, E) \to \mathcal{H} \otimes \mathcal{K}$ on the spanning elements of $\mathcal{T}C^*(G, E)$ by the formula

$$(\pi \times \rho)(s_{\mu}u_g s_{\nu}^*) := \pi(s_{\mu}u_g s_{\nu}^*) \otimes \rho(i_G(g))$$

The map is multiplicative and *-preserving because both ρ and π are. Now $(\pi \times \rho)$ is a *-homomorphism from $\mathcal{T}C^*(G, E)$ to $\mathcal{B}(\mathcal{H} \otimes \mathcal{K})$, and is thus a representation of $\mathcal{T}C^*(G, E)$ on $\mathcal{H} \otimes \mathcal{K}$. We see that for $g \in G$ and $\mu \in E^*$, we have

$$\begin{aligned} (\pi \times \rho)(u_g) &= (\pi \times \rho) \left(\sum_{v \in E^0} \sum_{v' \in E^0} s_v u_g s_{v'} \right) \\ &= (\pi \times \rho) \left(\sum_{v \in E^0} s_v u_g \sum_{v' \in E^0} s_{v'} \right) \\ &= \pi \left(\sum_{v \in E^0} s_v u_g \sum_{v' \in E^0} s_{v'} \right) \otimes \rho(i_G(g)) \\ &= \pi \left(\sum_{v \in E^0} s_v \right) \pi(u_g) \pi \left(\sum_{v' \in E^0} s_{v'} \right) \otimes \rho(i_G(g)) \\ &= \pi(u_g) \otimes \rho(i_G(g)) \end{aligned}$$

and

$$(\pi \times \rho)(s_{\mu}) = (\pi \times \rho)(\sum_{v \in E^{0}} s_{\mu} 1 s_{v})$$
$$= \pi(\sum_{v \in E^{0}} s_{\mu} 1 s_{v}) \otimes \rho(i_{G}(e))$$
$$= \pi(s_{\mu}) \otimes 1_{\mathcal{K}}$$

So that $(\pi \times \rho)$ is a representation with the desired properties.

Theorem 3.2.2. Let (G, E) be a self-similar action. Let (u, s) be the universal representation in $\mathcal{T}C^*(G, E)$. Then each s_{λ} is nonzero, and there is an injective homomorphism $\pi_E : \mathcal{T}C^*(E) \to \mathcal{T}C^*(G, E)$ such that $\pi_E(t_{\lambda}) = s_{\lambda}$ for all $\lambda \in E^*$. Further, the map $g \mapsto u_g$ induces an injective homomorphism $\iota : C^*(G) \to \mathcal{T}C^*(G, E)$. Proof. Let (G, E) be a self-similar action and let (u, s) be the universal representation of (G, E). Consider the Hilbert space $\ell^2(E) = \overline{span}\{\delta_{\lambda} : \lambda \in E^*\}$, where for $\lambda \in E^*$, $\delta_{\lambda} : E^* \to \mathbb{C}$ is the map defined by

$$\delta_{\lambda}(\mu) = \begin{cases} 1 \text{ if } \lambda = \mu \\ 0 \text{ otherwise} \end{cases}$$

We construct a Toeplitz representation (U, S) of (G, E) in $\mathcal{B}(\ell^2(E^*))$ via

 $U_a \delta_\mu := \delta_{a \cdot \mu}$

and

$$S_{\lambda}\delta_{\mu} := \begin{cases} \delta_{\lambda\mu} \text{ if } s(\lambda) = r(\mu) \\ 0 \text{ otherwise} \end{cases}$$

 U_g and S_μ are clearly bounded operators for all g and μ , as they map the spanning set of $\ell^2(E^*)$ into itself. It has been shown that the set $\{S_\lambda : \lambda \in E^*\}$ is indeed a Toeplitz-Cuntz-Krieger family of E in $\mathcal{B}(\ell^2(E^*))$ [2][1], so it remains to show that U is a unitary map and that the pair (U, S) satisfies axiom (3) in Definition 3.1.1.

Fix $g \in G$. Then for $\mu, \nu \in E^*$, we have

$$(U_g \delta_\mu | U_g \delta_\nu) = (\delta_{g \cdot \mu} | \delta_{g \cdot \nu})$$

and since μ and ν were arbitrary, by faithfulness of the action we have

$$(\delta_{g \cdot \mu} | \delta_{g \cdot \nu}) = \begin{cases} 1 \text{ if } \mu = \nu \\ 0 \text{ otherwise} \end{cases}$$

which is precisely the value of $(\delta_{\mu}|\delta_{\nu})$, and so U_g is an isometry. Furthermore, for $g \in G$ we have $U_{g^{-1}}U_g\delta_{\mu} = \delta_{g^{-1}\cdot g\cdot \mu} = \delta_{\mu}$ for all $\mu \in E^*$, so that the U_g are invertible, hence unitary, with $U_g^* = U_{g^{-1}}$.

Now, fix $g \in G$ and $\mu \in E^*$.

$$S_{g \cdot \mu} U_{g|\mu} \delta_{\lambda} = S_{g \cdot \mu} \delta_{g|\mu \cdot \lambda}$$
$$= \delta_{(g \cdot \mu)(g|\mu \cdot \lambda)}$$
$$= \delta_{g \cdot (\mu \lambda)}$$
$$= U_{g} S_{\mu} \delta_{\lambda}$$

for all $\lambda \in E^*$ with $r(\lambda) = s(\mu)$. For λ not satisfying this condition, we have $r(g|_{\mu} \cdot \lambda) = g|_{\mu} \cdot r(\lambda) \neq g|_{\mu} \cdot s(\mu) = s(g \cdot \mu)$, so that

$$S_{g \cdot \mu} U_{q|\mu} \delta_{\lambda} = 0 = U_g S_{\mu} \delta_{\lambda}$$

and then

$$U_g S_\mu = S_{g \cdot \mu} U_{g|_\mu}$$

for all $g \in G$ and $\mu \in E^*$, and (U, S) is a Toeplitz representation.

The universal property of $\mathcal{T}C^*(G, E)$ now gives a homomorphism $\psi : \mathcal{T}C^*(G, E) \to \mathcal{B}(\ell^2(E^*))$ such that $\psi(u_g) = U_g$ and $\psi(s_\lambda) = S_\lambda$ for all $g \in G$ and $\lambda \in E^*$. In particular, for any $\lambda \in E^*$, $S_\lambda = \psi(s_\lambda) \neq 0$, implying that $s_\lambda \neq 0$.

Further, the family $\{s_{\mu} : \mu \in E^*\}$ is a Toeplitz-Cuntz-Krieger family in $\mathcal{T}C^*(G, E)$ (contained in condition (2) of the definition of a Toeplitz representation), so that by the universal property of $\mathcal{T}C^*(E)$, the Toeplitz algebra of E, there is a homomorphism $\pi_E : \mathcal{T}C^*(E) \to \mathcal{T}C^*(G, E)$ with the property that $\pi_E(t_{\lambda}) = s_{\lambda}$ for all $\lambda \in E^*$. Since each s_{λ} is nonzero, $ker(\pi_E) = 0$, so π_E is injective.

Finally, to see that $\mathcal{T}C^*(G, E)$ contains a copy of $C^*(G)$, observe that the map $g \mapsto u_g$ from G to $\mathcal{T}C^*(G, E)$ induces a homomorphism $\iota : C^*(G) \to \mathcal{T}C^*(G, E)$ such that $\iota(i_G(g)) = u_g$ for all $g \in G$ by the universal property of $C^*(G)$.

Now let π be a representation of $\mathcal{T}C^*(G, E)$ on some Hilbert space \mathcal{H} and let ρ be a faithful representation of $C^*(G)$ on some Hilbert space \mathcal{K} . By Lemma 3.2.1, there is a representation $\pi \times \rho$ of $\mathcal{T}C^*(G, E)$ on $\mathcal{H} \otimes \mathcal{K}$ such that $(\pi \times \rho)(u_g) = \pi(u_g) \otimes \rho(i_G(g))$. Now by the universal property of $C^*(G)$, there is an injective homomorphism $\theta : C^*(G) \to \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ induced by the map $g \mapsto (\pi \times \rho)(u_g)$, which is injective because ρ is. Now we have

$$\theta(i_G(g)) = (\pi \times \rho)(u_g)$$

= $(\pi \times \rho)(\iota(i_G(g)))$

so that ι is also injective, as required.

References

- 1. A.A. Huef, M. Laca, I. Raeburn, and A. Sims, *Kms states on c*-algebras associated to higher-rank graph algebras*, arXiv:1212.6811v1 [math.OA].
- 2. ____, Kms states on the c*-algebras of finite graphs, arXiv:1205.2194 [math.OA].
- 3. M. Laca, I. Raeburn, J. Ramagge, and M.F. Whittaker, *Equilibrium states on the cuntz-pimsner algebras of self-similar actions*, arXiv:1301.4722 [math.OA].
- I. Raeburn, *Graph algebras*, Conference Board of the Mathematical Sciences, 2005.