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Abstract
This report explores the development of a one-dimensional mathematical

model for the evaporation of a pure liquid droplet suspended in its own vapour. In
an attempt to account for all relevant transport mechanisms, a “first principles”
approach is taken by developing the model from fundamental conservation equa-
tions. With the aid of a perturbation analysis, a reduced system of equations is
achieved and solved numerically with MATLAB. Realistic responses to varying
environmental conditions are demonstrated in several simulations. Finally, an
imbalance in the heat flow across the liquid/vapour interface is established as
the primary mechanism driving the evaporation process.

1 Introduction

Droplet evaporation is of great importance to diverse applications such as: pesticide
dispersal, fuel combustion, and the fabrication of nanomaterials. The evaporative pro-
cess is well understood from a broad perspective; however, it is becoming increasingly
important to develop detailed and specific models that can simulate how the droplet
evolves over time. This is no trivial task as the evaporation process is affected by a
great number of parameters and environmental conditions. Common simplifications
include assuming that the process will be dominated by particular flows, such as in the
case of purely diffusive models, or applying empirically determined relationships.

The primary aim of this project is to begin with the fundamental conservation
principles and, with minimal assumptions, derive an effective model for droplet evap-
oration. This model will then be used to investigate the effect of varied environmental
conditions and the underlying mechanisms driving the evaporation process.



2 Model

We begin by considering a pure liquid droplet, suspended in an atmosphere of its own
pure vapour, within a sufficiently large vessel and free from any external forces such
as gravity. The radial symmetry of this physical scenario leads to a two phase, one
dimensional model as depicted in Figure 1.

Figure 1: One dimensional domain for the droplet evaporation problem

Systems of equations are established in each phase, from the principles of conser-
vation of mass, momentum and energy. According to the work of Bird, Stewart and
Lightfoot [1], these conservation equations take the following form.
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DT

Dt
t = −(∇ · q)− T

(
dp

dT

)
V̂

(∇ · u)− (T : ∇u) (3)

where ρ is the density, u is the velocity, p is the pressure, T is the stress tensor, ĉv
is the volumetric heat capacity, q is the heat flux, T is the temperature and V̂ is the
specific volume.

To establish outer boundary conditions, we prevent any flows at the centre of the
droplet and apply Dirichlet boundary conditions at the far vapour boundary, as it is
sufficiently distant to be unaffected by the droplet over time. In accord with derivations
by Lock [4], boundary conditions are applied across the liquid/vapour interface which
enforce continuity of temperature and mass, momentum and energy flux.



It is also necessary to include the Clausius-Clapeyron equation [4] to provide a re-
lationship between temperature and pressure at the interface, during the phase change
process. The general form of this equation assumes equal pressures across the interface.
To avoid this assumption, we refer to Lock’s [4] examination of the continuity of the
specific Gibbs function. For each phase, we can express the total time derivative of
this function as:

dĜ
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dp
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− Ŝ dT

dt
(4)

where Ĝ is the specific Gibbs function, V̂ is the specific volume, p is the pressure, Ŝ
is the specific entropy and T is the temperature. Assuming continuity of the specific
Gibbs function across the interface, we can equate the above equation on either side
of the interface. Next, we apply the following substitutions:

L = Tv(Ŝv − Ŝl) (5)

V̂ =
1

ρ
(6)

where L is the latent heat of vaporisation, ρ is the density, and the l and v subscripts
refer to the liquid and vapour phases. With some further manipulation, we arrive at
the following modified form of the Clausius-Clapeyron equation:

1

ρv

dpv
dt
− 1

ρl

dpl
dt

=
L

Tv

dTv
dt

(7)

Collectively, these equations and boundary conditions form a closed system; how-
ever, solving such a highly coupled and non-linear system presents a formidable task
and some simplifications are necessary.

Firstly, we assume that the vapour can be modelled as an ideal gas and that the
liquid is an incompressible fluid. The former assumption removes vapour pressure
from the list of parameters by relating it to density and temperature through the ideal
gas law. The incompressible fluid assumption leads to three corollary assumptions:
constant liquid pressure, no mass flow within the droplet and no viscous stresses in
either phase. As a result, both the conservation of mass and momentum equations can
be eliminated from the liquid phase.



Next, the remaining equations and boundary conditions are non-dimensionalised.
This removes their dependence on units of measurement, groups any scaling constants
as coefficients and allows an order of magnitude analysis to be performed. As a result,
two coefficients are found to be very small, relatively speaking. The first of these, 1

ν2
occurs in the following conservation of momentum equation for the vapour phase.

1
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(8)

This implies that any changes in vapour pressure are insignificant. The second small
coefficient, ν11, can be seen in the following interfacial boundary condition, derived from
the continuity of momentum.

ρvTv = pl −
ν10σ

R
+ ν11uv

dR

dt
(9)

This equation describes a balance of forces at the interface. Therefore, the neg-
ligible magnitude of ν11 implies minimal contribution from vapour evaporating from
the surface of the droplet. To test the significance of these terms, a perturbation ex-
pansion is conducted, as outlined by Bush [2]. This reduces equation (8) to a simple
statement of the isobaric condition in the vapour phase. With this result and some
further manipulation of the equations, a significantly reduced system is achieved which
relies only on the conservation of heat in the liquid phase, and conservation of mass in
the vapour phase.

In order to numerically solve the system, it is convenient to fix the moving interface
by applying a spatial scaling. The following Landau scaling was an approach used by
Crank [3], where x becomes the scaled spatial parameter and R(t) is the position of
the moving interface.

r = xR(t) (10)

This scaling is ideal within the droplet but not within the vapour phase. As the
droplet radius diminishes, the Landau scaling progressively reduces the relative size of
the vapour phase, and the Dirichlet boundary condition becomes increasingly inaccu-
rate. Therefore it is necessary to apply the following spatial translation in the vapour
phase to maintain a fixed interface position:



r = x+R(t)− 1 (11)

In total, these simplifications and spatial transformations result in the following
reduced system of equations:
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Initial conditions:

Tl(x, 0) = 1 ; Tv(x, 0) = 1 ; R(0) = 1 (14)

Outer boundary conditions:

∂Tl
∂x
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Boundary conditions at the droplet surface:
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We now apply spatial and temporal discretisations to allow the system to be solved
numerically. As discussed by Patankar [6], the conservative nature of these equations
is well suited to a control volume scheme for spatial discretisation. For equation (12),
this is implemented by integrating across the control volume, providing the following
result:
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where e and w subscripts refer to values at the east and west face of the control
volume, and the p subscript refers to values at the central node. To manage the non-
linear terms, is has been necessary to assume that the temporal derivative of Tl on
the left hand side and the spatial derivative in the advective term are approximately
constant across the control volume.

Temporal discretisation is now applied by integrating equation (18) over a discrete
timestep with an implicit Eulerian method, to minimise instability. In this case, we
address the non-linearity in the advective term by lagging the spatial derivative and
using its value from the previous iteration.
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A similar process is likewise applied to equation (13); however, an averaging scheme
and lagging are required for the non-linearity within the diffusion term.

Finally, a numerical solver is written in MATLAB, which applies Newton’s method
to iteratively solve for droplet radius and temperature at each timestep. This solver
utilises mesh refinement in the vicinity of the interface to improve the accuracy of
finite volume approximations and achieves efficient, stable convergence of the solution
at each timestep through adaptive timestepping.

3 Results

In order for this model to be valid, it must behave according to established rules of
droplet evaporation. In particular, it needs to demonstrate appropriate responses to



environmental conditions and we expect it to follow the D2 law, as discussed by Mc-
Gaughey and Ward [5]. This law predicts that the square of the droplet diameter (or
radius) will change linearly over time. To investigate this behaviour, an initial simu-
lation was performed for a 100µm water droplet with 50% relative humidity and both
phases initially at 50◦C. As demonstrated in Figure 2 and Figure 3, the droplet evap-
orated completely within 20 seconds and the square of its radius closely approximated
a linear trend, providing support for the model.
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Figure 2: Radius of an evaporating
droplet
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Figure 3: Comparison of the square of
radius to an arbitrary linear function

In order to investigate the response to environmental conditions, two sets of simula-
tions were performed for the same 100µm water droplet under varying relative humidity
and initial temperature. For the simulations depicted in Figure 4, the droplet was sub-
jected to relative humidities of 20%, 50% and 80%, with both phases initially at 50◦C.
Clearly, increasing humidity resulted in slower evaporation rates. This agrees with
our understanding that evaporation slows as the vapour content in the surrounding
atmosphere approaches the saturated vapour pressure.

As shown in Figure 5, the relative humidity was then maintained at 50% and the
initial temperature across both phases was changed between 5◦C, 30◦C and 50◦C.
In this case, decreasing temperature slowed the rate of evaporation and at 5◦C, the
droplet instead experienced condensation. Each of the above simulations resulted in
the expected linear change in the square of the radius and demonstrated appropriate
changes to the evaporation rate for the environmental conditions. This sufficiently
confirmed the validity of the model.
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Figure 4: Droplet evaporation times in-
creasing with relative humidity
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Figure 5: Droplet evolution over time for
uniform initial temperatures

For comparison, a simulation was conducted with an initial vapour temperature of
30◦C and a liquid temperature of 5◦C. While this unsurprisingly resulted in complete
evaporation, Figure 6 demonstrates a brief period of condensation observed during the
first second of the simulation. We can investigate this unexpected result by examining
the evolution of temperature profiles in the vicinity of the liquid/vapour interface. As
shown in Figure 7, the temperature throughout the liquid phase required less than
half a second to reach the same level as at the interface. At this point, the entire
liquid phase was at a uniform temperature and thus no heat flow could occur from the
interface into the liquid; however, the steep temperature gradients in the vapour phase
guaranteed heat flow from the vapour into the interface. Therefore, in order to avoid
violating conservation of energy, it was necessary for the interface to move left into
the liquid phase. Clearly the imbalance in heat flux was the mechanism driving the
evaporation process. Extending this thought process, the initial period of condensation
likewise indicates that greater heat flow was entering the liquid phase than was being
supplied by the vapour phase, necessitating a corresponding increase in droplet radius.
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Figure 7: Temperature profiles near the
liquid-vapour interface

4 Conclusion

The fundamental conservation principles for mass, momentum and energy were suffi-
cient to develop a model for the evaporation of a pure droplet within its own vapour.
Although a limited set of assumptions were required to assist with the numerical anal-
ysis, the model demonstrated realistic response to temperature and humidity and con-
sistent agreement with the D2 law. Furthermore, the model actively demonstrated
that evaporation and condensation are ultimately governed by imbalances in heat flow
across the liquid/vapour interface and the necessity for conservation of heat to be
maintained.

This relatively simplistic scenario offers many options for further research. In par-
ticular, for spray pyrolysis applications, it would be important to examine the effect of
vapour flows on convective transport and droplet deformation. Within the droplet, the
effect of internal currents and chemical interactions between dissolved species would
have great significance within the field of nanofabrication.
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