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Abstract

De Rham’s theorem is a classical result implying the existence of an iso-
morphism between the De Rham and singular cohomology groups of a smooth
manifold. In this paper we review basic notions of differential forms, singular
simplexes and chain complexes. We then introduce both the de rham and singu-
lar cohomologies and show how they are related via Stoke’s Theorem. We then
present a proof of De Rham’s Theorem.
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1 Introduction

De Rham’s Theorem was first proven by Georges De Rham in 1931. The theorem itself
was first conjectured by Elie Cartan 2 years earlier, who conjectured that the nth betti
number bn of a smooth manifold M is the maximal number of closed n-forms ωi such
that no linear combination of these forms would be exact(see [3]). De Rham proved
that you could use Stoke’s theorem to create a dual pair between what is now called the
de rham cohomology groups Hn

DR(M) and the simplicial homology groups Hn(M ;R),
with their dimension being equal to the nth betti numbers and thus proving Cartan’s
conjecture. However at the time, cohomology had not yet been invented and so his
original theorem was written only in terms of homology.

In this paper we will give a proof of the more modern De Rhams theorem which
is stated in terms of cohomology. That is, for a smooth manifold M , the qth de
rham cohoology group Hq

DR(M) is isomorphic to the qth singular cohomology group
Hq(M ;R). In section 2 we will review basic definitions and theorems needed, then in
section 3 we will define both the singular and de rham cohomology groups of a smooth
manifold M . We will then give important lemmas and theorems needed about these
groups before we move onto the mapping induced by stokes theorem and finally give
a proof of De Rham’s Theorem.

2 Notation and Background

2.1 Differential manifolds and Partitions of unity

De Rham’s theorem is a theorem about differential manifolds (also called smooth man-
ifolds or C∞-manifolds). In this paper we define a differentiable manifold M to consist
of two parts, a topology and its differentiable structure. We define its topology to be:

• Hausdorff

• Locally euclidean, each point has some neighbourhood homeomorphic to Rd. d
is called the dimension of the manifold

• Second countable. i,e it has a countable basis.

The differentiable structure is a maximal atlas on M such that the transition functions
are C∞-related. This part allows us to do calculus on M . We assume the reader is



familiar with differentiation on smooth manifolds.

One concept which we will make great use of later are the so called partitions of
unity.

Definition 2.1. A Partition of Unity on M is a collection {ψi|i ∈ I} of C∞ functions
on M such that

• for each i ∈ I, ψi ≥ 0 on M .

• The collection of supports {suppψi|i ∈ I} is locally finite.

•
∑

i∈I ψi(p) = 1 for all p ∈M .

As it turns out, one of the more important consequences of a smooth manifolds
topology is that it is also paracompact. That is, each open cover of M has a locally
finite refinement. This is sufficient to always guarantee the existence of partitions of
unity.

Theorem 2.1. For any smooth manifold M and any open cover {Uα} on M . There
exists a countable partition of unity {ψi|i ∈ I} subordinate to the open cover and for
each i ∈ I, supp(ψi) is compact.

Proof. See [1, Thm. 1.11]

Partitions of unity allow us to ’glue’ together local functions or properties into
global ones and vice versa. We will use these as we will prove De Rham’s theorem by
breaking the manifold up into smaller more manageable pieces, and use these to glue
it back together.

2.2 Differential forms

Differential forms are defined in terms of exterior algebras.

Definition 2.2. We denote the Exterior Algebra of V by Λ(V ). It is graded algebra
if we set Λk(V ) as the set of all k-vectors. The multiplication in Λ(V ) is denoted by ∧
and is call the wedge or exterior product.



We will denote the tangent space of M at the point p by TpM which is the vec-
tor space of all linear derivations of germs at p of C∞(M) functions. We denote the
cotangent space at p as TpM

∗ and this is the dual space of the tangent space.

Definition 2.3. Let M be a smooth manifold then

• Λ∗k(M) =
∐

p∈M Λk(TpM
∗) i.e, the disjoint union of the exterior k-algebra of the

cotangent spaces. We call this the exterior k bundle over M .

• Λ∗(M) =
∐

p∈M Λ(TpM
∗) is called the exterior algebra bundle over M .

These bundles also have natural differential structures. As bundles, they also come
equipped with a projection functions π. We call a C∞-section of Λ∗(M) or Λ∗k(M) a
(differential) form or (differential) k-form respectively.

We denote the set of all differential k-forms on M as Ωk(M). Note that Ω0(M) is
just the vector space of all C∞(M) functions. We can then form the graded algebra
Ω∗(M) = Ω0(M)⊕Ω1(M)⊕ . . . over R of all differential forms on M . The multiplica-
tion in this algebra is the product it inherits from the wedge product ∧ of the exterior
algebras and is also called the wedge product.

Now, given a 0-form f on a smooth manifold M . For some m ∈M , it’s differential
at that point is a linear map dfm : TmM → R and df : M → TM∗ can be considered as
a 1-form on M . We can extend this operation to all forms and its called the Exterior
Derivative.

Theorem 2.2 (Exterior differentiation). There exists a unique linear operation d :
Ω∗(M)→ Ω∗(M) called the exterior derivative that

• Takes a k-form to a (k + 1)-form

• d ◦ d = 0

• For u ∈ Ωj(M) and v ∈ Ωk(M), d(u ∧ v) = d(u) ∧ v + (−1)ju ∧ d(v).

• Whenever f ∈ Ω0(M), df is the differential of f .

Proof. See [1, Thm. 2.20]



The differential of a C∞ function f : M → N is also sometimes denoted by f∗ and
called the pushforward. The differential at each point m ∈ M is a linear function on
tangent spaces, f∗m : TmM → Tf(m)N . (Really it’s a vector bundle homomorphism
between the two tangent bundles.) We can then define it’s dual map at each point m
which we call the pullback f ∗m : Tf (m)N∗ → TmM

∗.

The importance of the pullback is that we can use it to “pull back” differen-
tial k-forms on N to differential k-forms on M . Suppose α ∈ Ωk(N), then we de-
fine its pullback by f to be the form f ∗α ∈ Ωk(M) given by f ∗αm(X1, . . . Xk) =
αf(m)(f∗X1, . . . , f∗Xk) for each m ∈ M and Xi ∈ TmM . Thought of this way, we can
consider the pullback of a C∞ function g : M → N as a mapping g∗ : Ω∗(N)→ Ω∗(M).
Furthermore, it turns out to be an algebra homomorphism. i.e, for differential forms
α, β ∈ Ω∗(N) and µ, λ ∈ R we have that f ∗(µα + λβ) = µf ∗(α) + λf ∗(β) and
f ∗(α ∧ β) = f ∗(α) ∧ f ∗(β)

An important fact of the exterior derivative is that for any smooth map ψ : M → N ,
ψ∗ commutes with d. That is, for any α ∈ Ω∗(N) we have that d(ψ∗(α)) = ψ∗(d(w)).

2.3 Singular Simplexes

The standard k-simplex ∆k is defined to be

∆k =

{
{(x1, . . . , xk) ∈ Rk :

∑k
i=1 xi ≤ 1 and each xi ≥ 0} : k > 0

{0} : k = 0

For a differentiable manifold M , a differentiable (or smooth) singular k-simplex is
a map σ : ∆k → M which extends to a C∞-mapping on a neighbourhood of ∆k. We
will simply call this a k-simplex.

We can take the set of all formal linear combinations (with coefficients in R) of
k-simplexes which we will denote by Sk(M ;R). An element of this vector space is of
the form

∑m
i=1 aiσi and is called a k-chain. The set of all chains is denoted by S∗(M ;R).

We can define a boundary operator ∂ on simplexes. Suppose we have some k-
simplex σ. We define σi to be the its ith face. i.e, we restrict σ onto the ith face of the
standard k-simplex. Then we define the boundary operator as ∂σ =

∑
(−1)iσi giving

us a (k − 1)-simplex, the alternating sign keeps track of orientation. This can then be
extended linearly to chains.



The boundary operator has the important property that ∂ ◦ ∂ = 0. This is because
of the way it is defined as an alternating sum. Applying it twice causes all the parts
to cancel out leaving 0.

The importance of simplexes is that we can use them integrate differential forms.
Before we define the general case, let’s first look at the simple case of a differential
n-form defined on an open subset U ⊂ Rn. Because in local coordinates, an n-form on
n-dimensional space is of the form f(x1, . . . , xn)dx1∧dx2∧· · ·∧dxn where f is C∞(U).
we can simply define the integral of this n-form as the Riemann nth fold integral of f
over U . We can then use simplexes to extend this to general manifolds.

Definition 2.4. Let M be a smooth manifold. Suppose σ is an n-simplex on M and
ω a differential n-form on M . Define the integral of ω over σ as:

When n = 0

∫
σ

ω = ω(σ(0))

When n ≥ 1

∫
σ

ω =

∫
∆n

σ∗(ω)

We then extend this definition to chains by linearity. i.e, if c =
∑
aiσi is a chain

then
∫
c
ω =

∑
ai
∫
σi
ω

Remark. In the above definition, because σ itself is not generally smooth, the pullback
σ∗ is not always defined. We instead mean that σ∗ is the pullback of the smooth
function that σ extends to.

2.4 Sequences, (Co)Chains and (Co)Homology

Let R be any commutative ring. Suppose we have a collection {Ai|i ∈ Z} ofR-modules
along with homomorphisms An−1 → An. This gives us a sequence of modules which
we write diagrammatically as

. . . // An−1
// An // An+1

// . . .

We say a sequence is exact at A if for f : B → A and g : A → C, then
im(f) = ker(g). An exact sequence is one which is exact at all its component sets.

A short exact sequence is an exact sequence of R-modules of the form:

0 // A // B // C // 0



We now define important types of sequences. that of chain and cochain complexes.

Definition 2.5. A Chain Complex, denoted by (C∗, d∗), is a sequence of R-modules
(. . . , Cn−1, Cn, Cn+1, . . . ) with decreasing index n called its degree, connected by homo-
morphisms dn : Cn → Cn−1 called the nth boundary operators such that dn−1 ◦ dn = 0
for all n.

. . .
dn+2 // Cn+1

dn+1 // Cn
dn // Cn−1

dn−1 // . . .

A Cochain complex (C∗, d∗) is defined similarly except the degree n increases in-
stead of decreases, the homomorphisms are called coboundary operators and by con-
vention the index is written as a superscript instead of a subscript. e.g,

. . . dn−2
// Cn−1 dn−1

// Cn dn // Cn+1 d
n+1

// . . .

The reason for this convention is that if you take a chain complex (A∗, d∗). You can
form a cochain complex by taking the dual module for each An and the dual function
for each dn. Therefore Cochains are a sort of dual to chains.

Given some chain complex (A?, d?), if we have some element a ∈ Aq such that
d(a) = 0, then a is called a qth degree cycles while if there exists an element b ∈ Aq+1

such that d(b) = a, then a is called a qth degree boundary. For cochains we define
cocycles and coboundaries in exactly the same way.

Notice that because of the property d ◦ d = 0, boundaries are cycles and cobound-
aries are cocycles. So we can form the quotient space ker(dn)/im(dn−1) which we
denote by Hn(C∗) which we call the nth homology module of C∗. We similarly define
the nth cohomology module Hn(C∗) of a cochain complex C∗.

Remark. The homology modules Hn(C∗) and cohomology modules Hn(C∗) give us a
measure of how much the sequence fails to be exact at Cn and Cn since if it is exact,
then each (co)cycle would also be a (co)boundary and these modules would then be
trivial.

Complexes themselves are objects and so we can define mappings between com-
plexes in a meaningful way.

Definition 2.6. A map between two chain complexes C∗ and D∗ is called a Chain
Map and is a collection of homomorphisms {fn : Cn → Dn} such that the resulting
diagram commutes



. . . // Cn+1
//

��

Cn //

��

Cn−1
//

��

. . .

. . . // Dn+1
// Dn

// Dn−1
// . . .

A Cochain map is defined similarly.

Notice that that a cochain map f : C∗ → D∗ sends q-cocycles of C∗ to q-cocycles of
D∗ due to commutativity of the diagram. Similarly, f sends coboundaries to cobound-
aries. So a cochain map induces a well defined mappings between the cohomology
modules which we tend to denote by f ∗q : Hq(C∗)→ Hq(D∗).

There are two important lemmas that we will need. Proofs of these are abundant
in the literature but very readable ones can be found at [4].

Lemma 2.1 (the Five Lemma). Given a commutative diagram of modules in the form
of

A1
//

f1
��

A2
//

f2
��

A3
//

f3
��

A4
//

f4
��

A5

f5
��

B1
// B2

// B3
// B4

// B5

where each of the rows are exact and f1, f2, f4 and f5 are isomorphisms. Then f3 is an
isomorphism.

Lemma 2.2 (ZigZag Lemma for cochains). A short exact sequence of Cochain maps
0 // A∗ // B∗ // C∗ // 0 (That is, each 0 // Aq // Bq // Cq // 0
is exact) gives rise to a long exact sequence in cohomology:

. . . // Hn−1(B∗) // Hn−1(C∗)
∂n−1 // Hn(A∗) // Hn(B∗) // . . .

Where ∂n are called the connecting homomorphisms. A similar lemma holds for chains
as well.

The homomorphisms that are not the connecting homomorphisms in the long ex-
act sequence of cohomology are just the induced maps of the cochain maps. It is not
important to us to know exactly what the connecting homomorphisms are.(They are
explained in [4]).



3 De Rham’s Theorem

3.1 Singular and De Rham Cohomology (Mayer vietoras se-
quence)

3.1.1 Cohomology

Notice that for a smooth manifold M , Ω∗(M) along with the exterior derivative d forms
a cochain complex

0 // Ω0(M) d // Ω1(M) d // Ω2(M) d // . . .

So we can form cohomology modules from this complex which we call De Rham
Cohomology groups (Actually vector spaces but they are called groups for historical
reasons). We denote the qth De Rham cohomology group by Hq

DR(M). We also call
cocycles closed and coboundaries exact.

Similarly, we get a chain complex of S∗(M ;R) along with the boundary operator
∂.

. . . ∂ // S2(M ;R) ∂ // S1(M ;R) ∂ // S0(M ;R) // 0

Where the corresponding qth homology module Hq(M ;R) are called the qth singular
homology group (similarly a vector space).

However, it turns out we are more interested in the corresponding cochain complex.
Let Sk(M ;R) = hom(Sk(M ;R),R) and ∂∗ the dual map of the boundary operator ∂.
Then we get the cochain complex

0 // S0(M ;R) ∂∗ // S1(M ;R) ∂∗ // S3(M ;R) ∂
∗

// . . .

This gives us the qth singular cohomology groups Hq(M ;R).

3.1.2 Mappings between cohomology and homotopy

Now consider a smooth map f : M → N between two smooth manifolds M and N .
From above we know that f ∗ commutes with the exterior derivative d. If we think of
f ∗ as a collection of functions {f ∗k : Ωk(N)→ Ωk(M)} then f ∗ can be thought of as a



cochain mapping from Ω∗(N) into Ω∗(M).

. . . // Ωk−1(N) //

f∗k−1

��

Ωk(N) //

f∗k
��

Ωk+1(N) //

f∗k+1

��

. . .

. . . // Ωk−1(M) // Ωk(M) // Ωk+1(M) // . . .

So this in turn induces mappings f ∗k : Hk
DR(N) → Hk

DR(M) between the de rham
cohomologies. We use the same notation for both the pullback and the induced maps
between cohomologies. Which one we mean is easily understood through context.

The smooth map f also induces mappings between the singular homologies and
cohomologies. Consider the functions f̃k : Sk(M ;R)→ Sk(N ;R) given by the mapping
f̃k(σ) = f ◦ σ for k-simplex σ which we extend linearly. Now each f̃k is a linear map
and because

f̃k ◦ ∂(σ) = f̃k(
∑
i

(−1)iσi) =
∑
i

(−1i)f̃k(σ
i) =

∑
i

(−1i)(f̃k(σ))i = ∂ ◦ f̃k(σ)

these then form a a chain map from S∗(M ;R) into S∗(N ;R) and so induce maps
f∗k : Hk(M ;R)→ Hk(N ;R).

In a very similar way f also induces mappings between the singular cohomologies.
The duals of f̃k are linear maps f̃ ∗k : Sk(N ;R) → Sk(M ;R) and these also commutes
with the dual of the boundary operator. So f induces mappings f ∗k : Hk(N ;R) →
Hk(M ;R) between singular cohomologies.

An important property of both the singular and de rham cohomology groups is
that they are homotopic invariants (See [2, Thm. 11.6, Thm. 11.27(c)]).

Here we compute the cohomology for the simplest of all smooth manifolds. The
one point space {x}.

Theorem 3.1. Hq
DR({x}) and Hq

DR({x}) are isomorphic to R when q = 0 and vanish
when q 6= 0

Proof. First let’s compute the de rham cohomology groups. The one point space is a
0-dimensional smooth manifold and all maps are smooth on it. Since it has 0 dimen-
sions Ωk({x}) = 0 for k > 0 and so the only differentials are the set of all functions of



the point x into R. Therefore H0
DR({x}) ∼= R.

To compute the singular cohomology groups, we note that there is only one k-
simplex into the space {x} which is the constant function. So the set of k-chains is
then isomorphic to R. i.e, the set of all scalar multiples of this simplex. This then
implies that Sk({x};R) ∼= R for all k ≥ 0. Now, consider a k-simplex σ where k > 0.
Its boundary is ∂σ =

∑k
i=0(−1)iσi but each σi must also be the same since there is only

one possible map they can be. Therefore ∂ on odd k-chains is the zero map, while on
even k-chains it’s an isomorphism. This then forces H0({x};R) ∼= R since all 0-chains
are 0-cycles but none except 0 are 0-boundaries. When k is odd, Hk({x};R) = 0 since
all ∂ being the zero map makes all k-chains cycles and because the boundary with a
higher index is an isomorphism, all these cycles are boundaries. Similarly, when k is
even, only 0 is a cycle and this is obviously also a boundary.

We simply take duals to prove this for singular cohomology.

The importance of the above theorem is to realise that open convex sets in Rn are
homotopy equivalent to the one point space {x}.

3.1.3 Mayer-Vietoris Sequences

Now consider the following the following diagram where each i,j,k and l are the obvious
inclusion mappings.

U
k

  
U ∩ V

i

;;

j

##

M

V

l

>>



These pull back to restriction mappings i∗, j∗, k∗ and l∗ on the differential k-forms.

Ωk(U)

i∗xx
Ωk(U ∩ V ) Ωk(M)

k∗

dd

l∗zz
Ωk(V )

j∗

ff

Which gives us the sequence for all k:

0 // Ωk(M)
k∗⊕l∗// Ωk(U)⊕ Ωk(V )

i∗−j∗ // Ωk(U ∩ V ) // 0

it is routine to prove that that this is exact for all k and because the exterior derivative
commutes with pullbacks, we get a short exact sequence of cochain maps. By the
zigzag lemma we get a long exact sequence in cohomology called the Mayer-Vietoris
sequence for de rham cohomology.

. . . // Hn−1
DR (U)⊕Hn−1

DR (V ) // Hn−1
DR (U ∩ V ) // Hn

DR(M) // Hn
DR(U)⊕Hn

DR(V )) // . . .

Using the same ideas as above, we can also get a Mayer-Vietoris sequence for
singular cohomology as well.

3.2 Stokes Theorem and the De Rham homomorphism

One of the most famous theorems is Stokes theorem. As we will see, it gives us a very
natural mapping between the singular and de rham cohomologies.

Theorem 3.2 (Stokes Theorem). Let σ be some k-chain in a smooth manifold M, and
ω a smooth (k − 1) form defined on a neighbourhood of c(∆k). Then,

∫
∂c

ω =

∫
c

dω

For a smooth manifold M , we can define homomorphisms lk : Ωk(M)→ Sk(M ;R)
for each k ∈ Z by mapping ω 7→

∫
ω. i.e, for any k-form ω, we treat

∫
ω : Sq(M ;R)→ R

as a linear function on singular k-chains.



Stokes theorem then implies that this collection of homomorphisms {lk} commutes
with the exterior derivative and boundary operators, and so it is a cochain map.

. . . // Ωk−1(M) d //

lk−1

��

Ωk(M) d //

lk
��

Ωk+1(M) d //

lk+1

��

. . .

. . .
∂∗// Sk−1(M ;R) ∂∗ // Sk(M ;R) // Sk+1(M ;R)∂

∗
// . . .

Therefore, this induces mappings between the de rham and singular cohomology
groups.

Definition 3.1. Let U be some smooth manifold. We denote the induced homomor-
phisms of the kth cohomology groups by DRk(U) : Hk

DR(U) → Hk(U). We call the
collection {DRk(U)} the De Rham homomorphism on U or simply DR(U) and if each
DRk(U) is an isomorphism then we say DR(U) is an isomorphism.

In order to make use of the Mayer-Vietoris sequences we need the following two
lemmas.

Lemma 3.1. Let ψ : M → N be a C∞ function between smooth manifolds M and
N . Then this induces two pullbacks on the de rham and singular cohomology groups:
ψ∗k : Hk

DR(N) → Hk
DR(M) and ψ∗k : Hk(N ;R) → Hk(M ;R) which commute with the

kth De rham homomorphism on N and M . e.g, the following commutes:

Hk
DR(N)

ψ∗
k //

DRk(N)
��

Hk
DR(M)

DRk(M)
��

Hk(N ;R)
ψ∗
k // Hk(M ;R)

Proof. This is a consequence of the calculation for k-form ω on N and k-simplex σ in
M . ∫

σ

ψ∗ω =

∫
∆k

σ∗ψ∗ω =

∫
∆k

(ψσ)∗ω =

∫
ψσ

ω

An important consequence of this lemma is that if M and N are diffeomorphic and
ψ a diffeomorphism, then both horizontal ψ∗ are isomorphic. We can then conclude
by commutativity that if DR(M) is an isomorphism, then DR is an isomorphism on
all smooth manifolds N diffeomorphic to M .



Lemma 3.2. For a smooth manifold M and two open sets U and V whose union is
M . We have that the following commutes for all k.

Hk−1
DR (U ∩ V ) //

��

Hk
DR(M)

��
Hk−1(U ∩ V ;R) // Hk(M ;R)

where the horizontal homomorphisms are the connecting homomorphisms from their
respective Mayer-Vietoris sequence.

We omit the proof here since we haven’t explicitly defined what the connecting
homomorphisms are. (See [2, lem. 11.33])

3.3 Proof of De Rham’s Theorem

The proof we give follows the same idea as the one in [2] but with modification. First
we will prove 3 important Lemmas, before we finally prove De Rham’s theorem.

Lemma 3.3. If U ⊂ Rn and U is convex, then DR(U) is an isomorphism.

Proof. Because de rham and singular cohomology are homotopic invariants and U is
homotopy equivalent to {x}, from Theorem 3.1 we have that the qth de rham and qth
singular cohomology groups vanish for q 6= 0 and are isomorphic to R when q = 0.
Now consider the case when q = 0, in this case H0

DR(U) is the one-dimensional vector
space of constant functions on U since the only 0-forms ω such that dω = 0 are the
constant functions. Similarly, the only 0-simplexes are the maps from {0} → U . Since
by definition the integral of a 0-from over a 0-simplex is just the value of the form at
that point the simplex maps 0 into. We find that the de rham homomorphism can’t
be the zero map and hence must be an isomorphism.

Lemma 3.4. Let M be any smooth manifold. Given a basis B on M , there exists a
countable open cover {Ui} of M such that each Ui can be written as the finite union of
basis elements and if Ui ∩ Uj = ∅ then i 6= j ± 1

Proof. Let {Vi} be an open cover of M as in Theorem 2.1 and let ψi be a partition of
unity subordinate to this cover. Let us define a new C∞-function called α on M by
setting

α =
∞∑
i=1

iψi



Now, suppose p ∈M but p /∈ ∪Ni=1supp(ψi) (which is compact by lemma) Then

α(p) =
∞∑
i=1

iψi(p) =
∞∑

i=N+1

iψi(p) >
∞∑

i=N+1

Nψi(p) ≥ N
∞∑
i=1

ψi(p) = N

Therefore α−1([0, N ]) is compact for each N ∈ N. Because α is C∞, it is continu-
ous and so α−1(a, b) is open and must have compact closure for any open interval (a, b).

Define the sets Ai = α−1(i+1/4, i+7/4) and A′i = α−1(i, i+2) for i = −1, 0, 1, 2, ....
Now, for each point x ∈ Ai, take a basis element Bx ∈ B that contains x but is
contained in A′i and form the open cover {Bx} of Ai. Since Ai is compact, there is
a finite subcollection of {Bx} that still covers Ai. Take Ui as the union of this finite
subcollection and because we chose each Bx to be contained within A′i we find that
Ai ⊆ Ui ⊆ A′i. Therefore, if Ui ∩ Uj = ∅ then i 6= j ± 1.

Lemma 3.5. Let M be a smooth manifold. Suppose M =
⋃k
i=1 Ui where k ∈ N and Ui

are open. If DR is an isomorphism on each of the sets {Ui} and each finite intersection
of these sets, then D(M) is an isomorphism.

Proof. It is sufficient to simply prove this true for the case k = 2 since the general case
can then be proven by induction.

Suppose M = U ∪ V where U , V are open and DR is an isomorphism on U, V and
U ∩ V . From lemma 3.1 and 3.2 we get this commutative diagram between the two
Mayer-Vietoris sequences of de rham and singular cohomology.

Hq−1
DR (U)⊕Hq−1

DR (V ) //

DRq−1(U)⊕DRq−1(V )

��

Hq−1
DR (U ∩ V ) //

DRq−1(U∩V )

��

Hq
DR(M) //

DRq(M)

��

Hq
DR(U)⊕Hq

DR(V ) //

DRq(U)⊕DRq(V )

��

Hq
DR(U ∩ V )

DRq(U∩V )

��
Hq−1(U)⊕Hq−1(V ) // Hq−1(U ∩ V ) // Hq(M) // Hq(U)⊕Hq(V ) // Hq(U ∩ V )

By hypothesis, we know that all the vertical homomorphisms are isomorphims
except DRq(M). But the rows are exact and so the Five Lemma implies that DRq(M)
is isomorphic.

Theorem 3.3 (De Rham’s Theorem). Let M be any smooth manifold. Then DR(M)
is an isomorphism.



Proof. First we show that if DR(U) is an isomorphism for a each U in some countable
collection, it is an isomorphism for the disjoint union.

Let {Mj} be a countable collection of manifolds where DR(Mj) is an isomorphism
for each j. Let M =

∐
jMj be the disjoint union of these manifolds. Denote the

inclusion maps by ij : Mj → M . Then the map i = (i1, i2, . . . ) induces isomorphisms
between ⊕jHk

DR(Mj) and Hk
DR(M) as well as ⊕jHk(Mj;R) and Hk(M ;R). For each

k, ⊕jDRk(Mj) is an isomorphism between the direct product of the de rham and sin-
gular cohomology groups and so by Lemma 3.1, DRk(M) must also be an isomorphism.

Now, given {Ui} be an open cover as in lemma 3.4. let Uodd = ∪U2k+1, Ueven = ∪U2k

and Uint = ∪(Uk∩Uk+1) for k ∈ N. Notice that Uodd∩Ueven = Uint. So by lemma 3.5, if
DR(Ueven, DR(Uodd) and DR(Uint) were isomorphic then so would DR(M). Therefore
we only need to show DR is isomorphic on each Uk and Uk ∩ Uk+1 since Uodd, Ueven
and Uint are disjoint unions of these sets.

It is sufficient to simply show that M has a basis with the property that DR is
isomorphic on each basis element and on each finite intersection of basis elements.
This is because each Uk can be written as the union of finitely many basis elements
and Uk ∩Uk+1 can be written as the union of finitely many intersections of these basis
elements. Which by lemma 3.5 would imply that DR is an isomorphism on these sets.

If M is an open subset of Rn for some integer n. Then M does have a basis with
this property. Simply note that M would then have a basis of n-balls and since the in-
tersection of balls is still convex, by Lemma 3.3 DR is isomorphic on these intersections.

When M is a general smooth manifold of dimension n, we can simply take a basis
of domain charts. Each of these domains (and finite intersections) are diffeomorphic
to an open subset of Rn and hence DR is isomorphic on this basis. Hence the theorem
is proven.
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