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1 Introduction

Epidemic models are important for modeling and predicting the spread of a disease
through a population. However, the application of an epidemic model to an emerg-
ing, or even past, epidemic can be extremely difficult. In this report I will develop a
continuous-time Markov chain SEIR (CTMC SEIR) epidemic model in order to ad-
dress some of the issues inherent in other epidemic models. I will describe Bayesian
inference, which is a statistical approach to estimating the parameters of models such
as the CTMC SEIR model. The method I will use in order to estimate parameters
of an epidemic model is Approximate Bayesian Computation (ABC). I will discuss
the application of the CTMC SEIR model to ABC. Finally, I will discuss the ques-
tion of the best summary statistics to use when applying ABC to the CTMC SEIR
model.

This project was completed in a group research environment with fellow AMSI vacation
scholar Brock Hermans under the supervision of Dr Joshua Ross and Mr Jono Tuke. All
coding in this project was done in the statistical program R (R core team 2012).

2 Bayesian Statistical Theory

Bayesian statistics, an approach to statistical inference, provided the theoretical frame-
work for our project. Frequentist methods are familiar tools for an undergraduate
statistician. However, frequentist methods are sometimes difficult to apply to complex
models or large data sets. In particular, it is very difficult to apply frequentist meth-
ods to data where the likelihood function is difficult to sample from or intractable.
Modern methods in Bayesian statistics can allow inference without the requirement of
evaluating the likelihood function.

Bayesian inference is philosophically distinct from frequentist methods in two ways,
both of which are expressed in Bayes’s theorem. First, parameters are considered
to be outcomes of random variables. Second, inference is based on both our beliefs
about the parameter prior to observing data and on the observed data. These two
philosophical differences between Bayesian and frequentist inference are captured by
the following well known theorem, which forms the basis for Bayesian statistics.



Theorem 1. Bayes’s Theorem Let A1, . . . , Ak be events that partition a sample
space and let B be an arbitrary event on that space for which P (B) > 0. Then

P (Aj|B) =
P (B|Aj)P (Aj)∑k
i=1 P (B|Ai)P (Ai)

.

In Bayesian statistics this theorem is rephrased in terms of densities;

π(θ|y) ∝ π(θ)f(y|θ).

The prior density, π(θ), is chosen to summarise our beliefs about the parameter(s) of
interest prior to observing data. The likelihood of the observed data is f(y|θ). The
resulting function, π(θ|y), is called the posterior density and contains all the current
knowledge of the parameter(s) (Christensen et al 2011, p. 30).

This reconstruction of Bayes’s theorem highlights some important features of Bayesian
inference. First, in Bayesian inference a parameter is an outcome of a random variable.
Estimating a parameter is a matter of calculating the posterior density, rather than
estimating an unknown constant.

Bayesian inference also incorporates the idea that we have information about param-
eters of interest before we conduct an experiment in the prior density. This contrasts
sharply against the frequentist philosophy that all information comes from the observed
data. The prior is a probability distribution that we choose to express beliefs that we
have about the parameter of interest before the experiment. For example, if trying to
predict the outcome of fair coin tosses we might choose the prior to be a symmetric
function symmetric about 1/2 taking values on (0, 1). This expresses our knowledge
that the parameter is a probability, between 0 and 1, whose most likely value is 1/2.
There are many different justifications for different priors. In our project we chose the
prior to express that fact that we had very little information about the parameters of
interest; the prior was usually the uniform PDF on (0, 1).

A significant result of the inclusion of prior information, as represented in Bayes’s the-
orem, is that we can update our model to include information from new observations.
The posterior function is based on both our prior beliefs and evidence from the data. If
we have new evidence we can treat our old posterior as the new prior density. The new
likelihood is now based on new data and the model is updated to include new infor-
mation. This approach has a significant advantage over frequentist inference in some
situations. Inference no longer has to be repeated to include new information.



3 Approximate Bayesian Computation

3.1 Approximate Bayesian Computation Algorithms

The aim of our project was to develop a model for epidemic data with an intractable
likelihood. Approximate Bayesian computation, or ABC, is a Bayesian method which
avoids computation of or sampling from the likelihood. ABC is an algorithm that,
given a model M and an initial guess for the parameter θ, generates observations
from the posterior distribution of the data. Marjoram, Molitor, Plagnol and Tavaré
describe variations on a general ABC algorithm in their paper Markov chain Monte
Carlo without likelihoods (Marjoram et al 2003). Their general ABC algorithm is
outlined in Table 1. This paper also outlines theoretical results justifying ABC, which
I will not go into in this report.

A second ABC algorithm, outlined by Marjoram in their aforementioned paper, is
more suitable for large data sets. The key difference between this algorithm and the
general ABC algorithm is in the comparison of the simulated and observed data. In
this second algorithm the comparison is between a set of summary statistics, S, where
S is a set of summary statistics chosen prior to running the algorithm. This variation
is appropriate to large data sets, where calculating the distance between a simulated
and real data set is not computationally efficient. This variation of the general ABC
algorithm is detailed in Table 2.

There are a number of difficulties inherent in implementing any ABC algorithm. The
first is choosing the acceptance threshold ε. Choosing a threshold that is too large will

1 Sample θ∗ from the prior.
2 Simulate a data set D∗ from the model of interest M with

parameter θ∗. D∗ should have the same sampling schedule
as the observed data D.

3 Compare the simulated data D∗ with the observed data D by
computing the distance between the two data sets, |D−D∗|.

4 If the distance between D∗ and D is small, say |D−D∗| < ε
then keep θ∗ as a sample from the posterior. Otherwise
discard θ∗ and repeat steps 1 to 4.

5 Repeat for some pre-specified number of iterations.

Table 1: The General ABC Algorithm, (Marjoram et al 2003)



result in accepting too many samples of θ and the resulting chain will not necessarily be
a sample from the true posterior. On the other hand, generating a large enough sample
for inference is computationally infeasible with a very small threshold. A balance is
needed.

In order to implement ABC it is also necessary to generate data from the model M .
This can sometimes be difficult. In our project this model was the SEIR epidemic
model. I will discuss methods for generating data from the SEIR model in the next
section.

A final difficulty in implementing ABC is in choosing the set of summary statistics S.
I will discuss this problem in the final section of this report.

3.2 Kernel Density Estimation

In our project we used kernel density estimation to estimate the density of samples
generated by an ABC algorithm. An ABC algorithm returns a sample from the pos-
terior density. Generally we do not know the posterior density of data; in order to
make inference we need to be able to approximate the posterior density of the data.
A commonly used density estimator is the histogram. Histograms, however, are lack-
ing in that they are not continuous and exact values cannot be read from them. In
addition, the shape of a histograms is dependent on the choices of origin and interval
width (Silverman 1986, p. 7-11). Kernel density estimation, or KDE, is an alternative
method for estimating the density of data.

1 Sample θ∗ from the prior.
2 Simulate a data set D∗ from the model of interest M with

parameter θ∗. D∗ should have the same sampling schedule
as the observed data D.

3 Calculate S, the values of the summary statistics on D, and
S∗, the values of the summary statistics on D∗. Compare S
with S∗ by computing the distance between them, |S − S∗|.

4 If the distance between S and S∗ is small, say |S − S∗| < ε,
then keep θ∗ as a sample from the posterior. Otherwise
discard θ∗ and repeat steps 1 to 4.

5 Repeat for some pre-specified number of iterations.

Table 2: A Variation on the General ABC Algorithm (Marjoram et al 2003)



An explanation for KDE can be found in Silverman’s Density Estimation for Statistics
and Data Analysis (Silverman 1986, p. 13-19). Suppose we have a sample of n real
observations X1, . . . , Xn. In order to estimate the density of this sample with KDE we
first choose a kernel function. The kernel function is a function K which satisfies the
condition

∫ ∞
−∞

K(x)dx = 1.

Usually the kernel is a symmetric probability density function such as the Gaussian
density.

The kernel estimator with kernel K is defined to be

f̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
),

where h is a smoothing parameter called the bandwidth. The kernel estimator can be
understood to be the sum of kernel functions placed over each point in the sample.
In other words, over each Xi we place a symmetric density K. We then sum these
densities and normalise this function so that it is a valid probability density. This
resulting function is the probability density of the sample of n real observations.

KDE resolves some of the problems inherent in histograms but introduces others. A dif-
ficulty in implementing KDE is in specifying the bandwidth h. The bandwidth governs
the width of the kernel function and, hence, the smoothness of the kernel estimator. A
large choice of bandwidth can lead to a kernel estimator that has been over-smoothed;
the probability density of the sample may be obscured. A small choice of bandwidth
can result in a kernel estimator that is under-smoothed or too bumpy.

In Figure 1 I have shown the influence that poor choices of bandwidth can have on a
density estimated with KDE. Suppose that we toss a coin 20 times and observe two
heads. I applied ABC to this problem and used KDE to estimate the density of the
sample produced by ABC algorithm 2. The true density is a beta(0.5, 0.5) probability
density function.
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Figure 1: KDE used to estimate the density of ABC output for the coin problem,
bandwidth = 0.2 (top) and bandwidth = 0.002 (bottom).



Scholars have suggested many methods for the selection of bandwidth. An automatic
selection method based on the data has recently been developed by scholars Botev,
Grotowski and Kroese (Botev 2010). However, we found the R functions developed by
these scholars unsuitable for our data.

4 The SEIR Model

To implement the ABC algorithm we need a model, M . We applied an SEIR model,
a compartmental epidemic model assigning individuals in a population to one of four
categories: Susceptible to the disease, Exposed to the disease, Infectious with the
disease and Recovered from the disease.

A SEIR model can be justified by the fact that diseases have different stages. A person
with a cold might, for example, first be in a latent stage where they have no symptoms
but are carrying the disease. The person might then experience symptoms such as
a runny nose and cough. They might eventually recover from the cold. An epidemic
model must be capable of capturing these behaviours. As individuals might experience
the aforementioned stages of a cold, individuals move through the SEIR model from
left to right. An individual may either stay in their category or move to the next. The
SEIR model allows for individual modeling of this behaviour. Movement out of the
S, E and I categories occurs with probabilities governed by the rate parameters β, σ
and γ. Once an individual is in the R category, they remain recovered. The epidemic
ends when all individuals are recovered or when there are no more individuals in the
exposed or infected categories.

S → E → I → R

In order to apply ABC to the SEIR model we need to be able to simulate from the
model. Formulating the SEIR model in terms of a continuous-time Markov chain is
one way of doing this.

4.1 The CTMC SEIR Model

We can model the spread of a disease through a population by formulating the SEIR
model as a continuous-time Markov chain. In the continuous-time Markov chain SEIR



model (CTMC SEIR) the state of the model at any time is the number of individuals in
the susceptible, exposed and infectious categories, denoted by (s, e, i) with constraints
s + e + i ≤ N for N the total population size, 0 ≤ s and e, i ≤ N . An individual
leaving the infected category is considered to be removed from the model.

The transition rates from one state to another are given below.

1.− (s, e, i)→ (s− 1, e+ 1, i) at rate
si

N
2.− (s, e, i)→ (s, e− 1, i+ 1) at rate σe

3.− (s, e, i)→ (s, e, i− 1) at rate γi

A CTMC remains in a state for a continuous amount of time. Let T1, be the time to a
change in state (s, e, i)→ (s−1, e+1, i), T2 to a change in state (s, e, i)→ (s, e−1, i+1),
and T3 to a change in state (s, e, i)→ (s− 1, e+ 1, i). As a consequence of the Markov
property we have T1 ∼ exp( si

N
), T2 ∼ exp(σe) and T3 ∼ exp(γi).

Data can be simulated from the CTMC SEIR model by calculating the sequence of
events that occur. To begin, specify the initial population state and parameter val-
ues β, γ and σ. Calculate the minimum time to any change in state by sampling
min{T1, T2, T3} and make the associated change in population state. This procedure is
repeated until the end of the epidemic, or until there are no individuals in either of the
exposed or infectious categories. However, this algorithm is computationally exhaus-
tive. A more efficient algorithm for simulation for the SEIR model is the ‘Gillespie’ al-
gorithm. The Gillespie algorithm was popularised by Daniel Gillespie in 1977 (Gillespie
1977). It is based on the fact that we can show that min{T1, T2, T3} ∼ exp( si

N
+σe+γi).

The Gillespie algorithm is detailed in Table 3.

Algorithms such as the Gillespie algorithm describe the path of an epidemic. The
Gillespie algorithm in particular can generate data from the CTMC SEIR model, which
allows us to apply ABC to our CTMC SEIR model.

5 Summary Statistic Selection for ABC

In order to implement ABC, as described in section three, an appropriate set of sum-
mary statistics S must be chosen. Summary statistics are extremely important when



dealing with large data sets. It is not always practical to deal with the data in its full
form. A summary statistic can condense the data without compromising the accuracy
of inference. For example, using summary statistics in an ABC algorithm avoids the
computationally exhaustive requirement of calculating differences between data sets.
Instead we compare the summary statistics.

Choosing sets of summary statistics can sometimes be very difficult. The ideal set is
both small and contains as much information about the data as possible. A balance
between these two requirements is needed. The ideal summary statistic is a sufficient
statistic:

Definition 1. Suppose y|θ ∼ f(y|θ). A statistic S(y) is said to be sufficient if the
distribution of y given S(y) does not depend on θ (Christensen et al 2011, p. 66).

A sufficient statistic and the data hold the same about of information about the pa-
rameter of interest. However, in many situations sufficient statistics cannot be found.
Other methods must be used to determine a minimal set of summary statistics. I will
describe two methods for summary statistic selection, a method based on plots of statis-
tics against associated parameter values, and a semi-automatic ABC approach.

5.1 Selection based on plots

A simple way of assessing the usefulness of summary statistics is plotting values of
the parameter against the observed value of a summary statistic on data simulated
from the parameter. This method is outlined in Table 4. The stronger the relationship
between the parameter and the associated summary statistic, the better the statistic.

1 Set initial values for β, σ and γ and the initial state of the
population (s, e, i).

2 Calculate the minimum time to the next change in state,
where min{T1, T2, T3} ∼ exp(βsiN + σe+ γi).

3 Choose the next event to occur:
Event 1 occurs with probability βsi

N
Event 2 occurs with probability σe
Event 3 occurs with probability γi

4 Update (s, e, i) and repeat until e = 0 and i = 0.

Table 3: The Gillespie Algorithm for the CTMC SEIR model (Gillespie 1977)



Summary statistics associated with plots showing no relationship are discarded; there
is not a strong relationship between the statistic and the parameter.

Unfortunately plots of statistics for the SEIR models against parameters appeared to
show, for the most part, no strong relationship. Plotting the statistics against ratios
of parameters revealed a stronger relationship. These plots are shown in Figure 2. We
suspect that generating these plots with larger initial populations might yield better
results. This could be an avenue for further research.

1 Generate a hypercube of values for β, σ and γ.
2 Simulate data x using the Gillespie algorithm with parame-

ters β, σ and γ.
3 Calculate the value of a set of summary statistics S on x.
4 Repeat.
5 Choose appropriate summary statistics based on plots of S

against associated values of β, σ and γ.

Table 4: Summary statistic selection method one
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Figure 2: Plots of various summary statistics against associated parameter values,
generated with s = 5, e = 1 and i = 1 (R core team 2012).



5.2 Selection based on semi-automatic ABC

Semi-automatic approximate Bayesian computation is a second approach to summary
statistic selection developed by Paul Fearnhead and Dennis Prangle in 2012 (Fearnhead
& Prangle 2012). In this method, summary statistic selection is built into an ABC
algorithm. A linear regression is fitted to the data in order to estimate summary
statistics. Their method is detailed in Table 5.

In step one we implement ABC as in Table 2. This is to reduce the region in which we
suspect the parameter values lie. In step two we implement the Gillespie algorithm,
as in Table 3. In step three we estimate appropriate summary statistics by fitting the
following linear models, where D∗ = {D1, . . . Dn} is our simulated data and (a1, . . . an),
(b1, . . . bn), (c1, . . . cn) are estimated constants.

βi = a0 + a1D1 + . . .+ anDn + εi

σi = b0 + b1D1 + . . .+ bnDn + εi

γi = c0 + c1D1 + . . .+ cnDn + εi.

The real data D is then substituted into each model and the resulting values are
summary statistics for β, σ and γ respectively. Step four is again familiar; we run
ABC as in Table 2 with the summary statistics generated in step three.

While this method worked for Fearnhead and Prangle, we found that fitting linear
models to our data estimated unrealistic summary statistics. This seemed to be caused
by the form of our data. The Gillespie algorithm simulates a string of population states,
(s, e, i) with an associated time of change in state. The algorithm stops when e = 0
and i = 0, which means that data generated by the Gillespie algorithm has no fixed
length. Applying linear regression to data of wildly varying lengths resulted in linear
models that were unusable.

1 Use a pilot run of ABC to determine a region of non-
negligible posterior mass.

2 Simulate sets of parameter values and data.
3 Use the simulated parameter values and data to estimate

the summary statistics.
4 Run ABC with this choice of summary statistics.

Table 5: Semi-automatic ABC (Fearnhead & Prangle 2012)



Our solution to this problem was to adapt the semi-automatic ABC algorithm by fixing
the length of the simulated data. We adjusted the Gillespie to produce data in the
form of a set of summary statistics S = {S1, S2, . . . , Sn}. We implemented step three
of the semi-automatic ABC algorithm with the following three linear models, where
(a1, . . . an), (b1, . . . bn) and (c1, . . . cn) are again estimated constants.

βi = a0 + a1S1 + . . .+ anSn + εi

σi = b0 + b1S1 + . . .+ bnSn + εi

γi = c0 + c1S1 + . . .+ cnSn + εi.

We assessed the fit of the three models and removed variables with large associated
p-values. Summary statistics associated with large p-values were considered to be
uninformative. This approach is advantageous in that it allowed us to implement
Fearnhead and Prangle’s semi-automatic ABC algorithm. However, it has a significant
disadvantage in that our choice of a set of summary statistics S is biased. Implementing
a semi-automatic approach is designed to avoid the bias inherent in summary statistic
selection. Our adjustment of the semi-automatic ABC algorithm re-introduces this
bias.

We believe that disadvantages of our variation of Fearnhead and Prangle’s semi-
automatic ABC algorithm will be negligible. The models that we are fitting are func-
tions of data and, as such, still contain information about the data. We were able
to obtain results that gave weight to this idea. We believe, but have not yet shown,
that very little information is lost by basing our estimation of summary statistics on
functions of summary statistics. The next step in our research would be to attempt to
show this. We could then fit this ABC algorithm to epidemic data and estimate the
transition rates.

6 Conclusion

The aim of our AMSI vacation project was to apply a model to epidemic data with an
intractable likelihood function. We began by investigating Bayesian inferential meth-
ods for data without the likelihood. We then worked to apply our chosen method,
approximate Bayesian computation, to epidemic data. In order to do this we investi-
gated a method for density estimation, KDE. We also developed a model, the CTMC
SEIR model, for epidemic data. Within this we worked to apply the Gillespie algorithm



for simulation to our situation. A significant focus in our project was on the choice
and use of summary statistics within the ABC algorithm. We investigated a num-
ber of methods for summary statistic selection, including plotting simulated statistics
against associated values and the semi-automatic approximated Bayesian computation
algorithm.

There are many avenues for further work on our project. The most immediate of these
would be to try and show that our variation of the semi-automatic ABC algorithm
does not lose information. It would also be of interest to repeat our first approach to
summary statistic selection with larger initial populations. I would also like to explore
the use of other ABC algorithms, including ABC MCMC and ABC rejection sampling.
We would aim to complete our research by using our model to estimate the transition
rates of a real epidemic.

I would like to thank AMSI for giving me the opportunity to explore this area of
statistics and for funding my project. I would also like to thank CSIRO for allowing
the opportunity to present my research at the Big Day In. I have very much appreciated
the support and advice of my supervisors, Mr Jono Tuke and Dr Joshua Ross. Their
input was invaluable throughout the project. Finally, I would like to thank my partner
Brock Hermans. I would not have made as far without him.
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