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The rate of contact plays a significant role in modeling the spread of 
infectious diseases. This report describes how spatial constraints and 
individual heterogeneity were incorporated to model the rate of 
contact of field voles (Microtus agrestis). Voles contact networks 
were formed from mark recapture data collected over 7 years. Every 
vole trapped represents a node in the network. And since edges were 
not directly observed, they were inferred from trap sharing. 
Incorporating the spatial constraints into a simple rate of contact 
model, which assumes every vole has an equal chance of having 
contact with every other vole, provides sufficient evidence to suggest 
an improvement over the random mixing of hosts. Individual 
characteristics such as mass and gender were investigated to 
incorporate the individual heterogeneity of voles to have contact 
with each other into the models. Upon conducting mass versus 
degree analyses for different networks, there is strong evidence to 
support the grouping of voles into three classes; BIG male, female, 
SMALL male. It is found that male voles with higher degree tend to 
have higher mass and the male voles with lower degree tend to have 
lower mass. A significant drop in the AIC values was observed for 
networks classified into the breeding season when both the spatial 
constraints and individual heterogeneity were combined to model 
the rate of contact. There is significant supporting evidence that the 
underlying structure of contact networks is far more complex than 
the simple random mixing of hosts that most models for the rate of 
contact assume.  
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1. Introduction 
 
 Mathematical models for infectious disease typically use contact rates (e.g. the 
number of other voles that a vole encounters over a specified time interval) as one of 
their main elements in predicting the outcomes of an epidemic. However, few studies 
have been conducted to determine the patterns of contact in wildlife populations. 
 

This project aims to investigate the importance of spatial constraints and 
individual heterogeneity on the rate of contact of voles. Spatial constraints are simply 
the importance that spatial distance plays in the rate of contact. Individual 
heterogeneity is taking into account characteristics such as mass and sex in determining 
the rate of contact. 
 
 If these dominant hubs, with specific characteristics, can be targeted for 
vaccination or removal then an epidemic might be brought under control faster or an 
outbreak prevented.  
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2. Methodology 

2.1 How the networks were formed 
 

Before moving on to talk about models that were fitted to the data to model both 
the spatial constraints and the individual heterogeneity, this section briefly explains 
how the networks were formed. 
 

The models were fitted to mark recapture data collected for 7 years from 4 sites. 
For each of the 4 sites there were 64 primary trapping sessions from May 2001 to 
March 2007 approximately a month apart. Each primary session had 5 secondary 
trapping sessions. The data for two consecutive trapping sessions were combined to 
form a network. The network is formed such that each vole trapped is a node in the 
network. Contacts are not directly observed and are inferred from trap sharing. An edge 
is formed between two voles if, and only if, they are caught in the same trap at least 
once. The spatial location of each vole was calculated as the average position of the 
traps it was caught in. 
 

During each primary session, 100 traps were laid out, 5 m apart, as shown in 
Figure 1. For instance, if a vole V1 was caught in A4, B4, C6 and E7 during either of the 
two consecutive trapping sessions, then its spatial location would be, the average of all 
the traps it was caught in, x-coordinate=2.75 and y-coordinate=5.25. Similarly, if 
another vole V2 was caught in H6, H8 and I7 then its spatial location would have x-
coordinate=8.33 and y-coordinate=7. 
 

 
 
Figure 1 – A visualisation of the trap layout, illustrating how spatial locations for individual voles were 
derived from averaging the respective trap locations for individual voles caught during either of the two 
consecutive trapping sessions.   
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Suppose another vole V3, was caught in E7, F9 and H6 (refer to Figure 2), then its 
spatial location would be x-coordinate=6.33 and y-coordinate=7.33. An edge would be 
inferred between V1 and V3 because they were both caught in E7. Similarly, an edge 
would be inferred between V3 and V2 because they were both caught in H6. Therefore, 
this simple network would have three nodes and two edges. And each node will have an 
x-coordinate and y-coordinate. 
 𝑁 = {𝑉ଵ, 𝑉ଶ, 𝑉ଷ} 
 𝐿 = {𝑒ଵ, 𝑒ଶ} 
 𝑓 = {𝑒ଵ: 𝑉ଵ~𝑉ଷ, 𝑒ଶ: 𝑉ଶ~𝑉ଷ} 
 

 
Figure 2 – A visualisation of how edges are inferred between voles caught in the same trap at least once 
during either of the two consecutive trapping session.  
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2.2 Model development 
 

Let the number of contacts between vole i and vole j, follow a Poisson 
distribution with intensity 𝑘 , over some finite time interval. 
 
i.e. 

  Pr (𝑋 = 𝑥) = షೖೕ൫ೕ൯ೣ௫!  
 

Therefore, the probability of observing no contacts between vole i and vole j is 
when 𝑥 = 0,  
 Pr (𝑋 = 0) = 𝑒ିೕ൫𝑘൯0! = 𝑒ିೕ  

 
Thus the probability of observing at least one contact between vole i and vole j 

and therefore an edge existing in the observed network is: 
 
 𝑝 = 1 − Pr (𝑋 = 0) = 1 − 𝑒ିೕ 
 

2.3 Different types of models 
 

Two parameter model 
 

Firstly, the following model was considered where the rate of contact only 
depended on the spatial constraints 
 𝑘 = 𝑐𝑒ିఒ௦ೕ  
 
i.e. 𝑘  is the rate of contact, 𝑠 is the Euclidean distance between vole i and vole j, and 𝑐 
and 𝜆 are constants to be estimated. The magnitude of 𝜆 determines the scale over 
which the spatial constraints operate. 
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Figure 3 – Illustration of how varying the distance, 𝒔𝒊𝒋, and the parameter, 𝝀, can affect the rate of contact, 𝒌𝒊𝒋. 
Assuming 𝒄 = 𝟏. 

 
Suppose the distance, 𝑠, between two voles is taken on the interval [0:1:15], 

and lambda is allowed to take values {0, 0.1, 1, 5, 10} as shown in Figure 3. For example 
when 𝜆=0.1 the rate of contact declines exponentially as the distance between vole i and 
vole j increases. When 𝜆=1 the rate of contact declines much faster as we move right 
along the x-axis than when 𝜆=0.1. Therefore, for larger values of 𝜆 the decline in the rate 
of contact is much faster such that the rate of contact asymptotically approaches zero 
for smaller values of 𝑠. 
 

On the other hand, when 𝜆=0 the rate of contact, 𝑘 , is constant and does not 
depend on distance. Therefore, every vole is equally likely to have contact with every 
other vole and the model resembles the rate of contact model that assumes random 
mixing of hosts. 
 

This project mainly concentrated on fitting models that take into account the 
individual heterogeneity of voles. Four different models were fitted, where the contact 
rate depended on both spatial constraints and individual characteristics such as gender 
and mass. Refer to “3.1 How the different groups were formed” for a demonstration of 
how the different classes that ൫𝑥, 𝑥൯ can belong to are derived. 
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Five parameter model - Model 1 
 𝑘 = 𝑐𝑒ିఒ௦ೕ𝑥𝑥  ൫𝑥, 𝑥൯ ∈ {𝑀, 𝐹, 𝑚} 
 

Five parameter model - Model 2 
 𝑘 = 𝑐𝑒ିఒ௦ೕ൫𝑥 + 𝑥൯  ൫𝑥, 𝑥൯ ∈ {𝑀, 𝐹, 𝑚} 
 

Five parameter model - Model 3 
 𝑘 = 𝑐𝑒ିఒ௦ೕ൫𝑥 + 𝑥൯𝑥𝑥  ൫𝑥, 𝑥൯ ∈ {𝑀, 𝐹, 𝑚} 
 
where 𝑥 , is a measure of eagerness of vole i, to have contact with another vole. Similarly 𝑥 , is a measure of eagerness of vole j, to have contact with another vole. 
 

Eight parameter model  
 𝑘 = 𝑐𝑒ିఒ௦ೕ𝑥  ൫𝑥൯ ∈ {𝑀𝑀, 𝑀𝐹, 𝑀𝑚,   𝐹𝐹,   𝐹𝑚,   𝑚𝑚} 
 
where 𝑥 , is a measure of eagerness of vole i, to have contact with another vole j, such 
that: ൫𝑥൯ ∈ {𝑀𝑀,   𝑀𝐹,   𝑀𝑚,   𝐹𝐹,   𝐹𝑚,   𝑚𝑚} 
 

2.4 Estimation of parameters 
 Ω = ൛(𝑖, 𝑗)|𝑎 = 1ൟ and Ωᇱ = ൛(𝑖, 𝑗)|𝑎 = 0ൟ 
 
There will be a total of 𝑛(𝑛 − 1) terms in the likelihood function. 
 
The first product will comprise of 𝑚 terms. 
 
Whereas, the second product will comprise of 𝑛(𝑛 − 1) − 𝑚 terms. 
 

Two parameter model 
 𝑝(𝑖, 𝑗) = ቀ1 − 𝑒ିషഊೞೕ ቁ ൫𝑎൯ + ቀ𝑒ିషഊೞೕ ቁ ൫1 − 𝑎൯ 
 ∀ (𝑖, 𝑗) ∈ 𝑛,   𝑗 > 𝑖 
 𝐿൫𝜆, 𝑐|𝑝(𝑖ଵ, 𝑗ଶ), 𝑝(𝑖ଵ, 𝑗ଷ), ⋯ , 𝑝(𝑖ିଶ, 𝑗), 𝑝(𝑖ିଵ, 𝑗)൯ =  ෑ ቀ1 − 𝑒ିషഊೞೕ ቁ(,)∈ஐ ෑ ቀ𝑒ିషഊೞೕ ቁ(,)∈ஐᇲ  

 
The values for 𝑐 and 𝜆 were estimated using maximum likelihood estimation. 
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Five parameter model - Model 1 
 𝑝(𝑖, 𝑗) = ቀ1 − 𝑒ିషഊೞೕ௫௫ೕቁ ൫𝑎൯ + ቀ𝑒ିషഊೞೕ௫௫ೕቁ ൫1 − 𝑎൯ 

 ∀ (𝑖, 𝑗) ∈ 𝑛,   𝑗 > 𝑖 
 𝐿൫𝜆, 𝑐, 𝑀, 𝐹, 𝑚|𝑝(𝑖ଵ, 𝑗ଶ), 𝑝(𝑖ଵ, 𝑗ଷ), ⋯ , 𝑝(𝑖ିଶ, 𝑗), 𝑝(𝑖ିଵ, 𝑗)൯ =  ෑ ቀ1 − 𝑒ିషഊೞೕ௫௫ೕቁ(,)∈ஐ ෑ ቀ𝑒ିషഊೞೕ௫௫ೕቁ(,)∈ஐᇲ  

 
Five parameter model - Model 2 

 𝑝(𝑖, 𝑗) = ቀ1 − 𝑒ିషഊೞೕ൫௫ା௫ೕ൯ቁ ൫𝑎൯ + ቀ𝑒ିషഊೞೕ൫௫ା௫ೕ൯ቁ ൫1 − 𝑎൯ 
 ∀ (𝑖, 𝑗) ∈ 𝑛,   𝑗 > 𝑖 

 𝐿൫𝜆, 𝑐, 𝑀, 𝐹, 𝑚| 𝑝(𝑖ଵ, 𝑗ଶ), 𝑝(𝑖ଵ, 𝑗ଷ), ⋯ , 𝑝(𝑖ିଶ, 𝑗), 𝑝(𝑖ିଵ, 𝑗)൯ =  ෑ ቀ1 − 𝑒ିషഊೞೕ൫௫ା௫ೕ൯ቁ(,)∈ஐ ෑ ቀ𝑒ିషഊೞೕ൫௫ା௫ೕ൯ቁ(,)∈ஐᇲ  

 
Five parameter model - Model 3 

 𝑝(𝑖, 𝑗) = ቀ1 − 𝑒ିషഊೞೕ൫௫ା௫ೕ൯௫௫ೕቁ ൫𝑎൯ + ቀ𝑒ିషഊೞೕ൫௫ା௫ೕ൯௫௫ೕቁ ൫1 − 𝑎൯ 
 ∀ (𝑖, 𝑗) ∈ 𝑛,   𝑗 > 𝑖 

 𝐿൫𝜆, 𝑐, 𝑀, 𝐹, 𝑚| 𝑝(𝑖ଵ, 𝑗ଶ), 𝑝(𝑖ଵ, 𝑗ଷ), ⋯ , 𝑝(𝑖ିଶ, 𝑗), 𝑝(𝑖ିଵ, 𝑗)൯ =  ෑ ቀ1 − 𝑒ିషഊೞೕ൫௫ା௫ೕ൯௫௫ೕቁ(,)∈ஐ ෑ ቀ𝑒ିషഊೞೕ൫௫ା௫ೕ൯௫௫ೕቁ(,)∈ஐᇲ  

 
The values for 𝑐, 𝜆, 𝑀, 𝐹 and 𝑚 were estimated using maximum likelihood estimation. 
 

Eight parameter model  
 𝑝(𝑖, 𝑗) = ቀ1 − 𝑒ିషഊೞೕ௫ೕቁ ൫𝑎൯ + ቀ𝑒ିషഊೞೕ௫ೕቁ ൫1 − 𝑎൯ 
 ∀ (𝑖, 𝑗) ∈ 𝑛,   𝑗 > 𝑖 

 𝐿൫𝜆, 𝑐, 𝑀𝑀, 𝑀𝐹, 𝑀𝑚, 𝐹𝐹, 𝐹𝑚, 𝑚𝑚|𝑝(𝑖ଵ, 𝑗ଶ), 𝑝(𝑖ଵ, 𝑗ଷ), ⋯ , 𝑝(𝑖ିଶ, 𝑗), 𝑝(𝑖ିଵ, 𝑗)൯ =  ෑ ቀ1 − 𝑒ିషഊೞೕ௫ೕቁ(,)∈ஐ ෑ ቀ𝑒ିషഊೞೕ௫ೕቁ(,)∈ஐᇲ  

 
The values for 𝑐, 𝜆 𝑀𝑀, 𝑀𝐹, 𝑀𝑚, 𝐹𝐹, 𝐹𝑚, and 𝑚𝑚 were estimated using maximum 
likelihood estimation. 
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3. Results 
 

3.1 How the different groups were formed 
 

The two parameter model only takes into account the spatial constraints. 
Therefore, to incorporate the individual heterogeneity of voles to have contact with 
each other’s individual characteristics such as mass and gender were investigated. 
Figure 4 shows a plot of mass versus degree for network 24, formed by combining data 
from trapping sessions 47 and 48.  The blue triangles represent the male voles and the 
red dots represent the female voles. From this graph it is evident that male voles with 
lower mass tend to have lower degree and male voles with higher mass tend to have 
higher degree. Sometimes, there are outlier cases like the blue triangle circled in black, 
which has low mass and high degree. This distinction helped classify the male voles into 
two groups; those with mass less than 25 were classified into the SMALL MALE group 
whereas those with mass greater than or equal to 25 were classified into the BIG MALE 
group.  
 

On the other hand, no such clear distinction is evident in the female voles. 
Therefore, the female voles were classified into a separate group but did not subdivide 
this group further on the basis of mass. Yet on average the females had lower contact 
rate than the males as shown in Figure 4. 
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Figure 4 – Mass versus degree plot for individual voles in Network 24, caught in either trapping sessions 47 
and/or 48. The blues triangles represent the male voles whereas the red dots represent the female voles. 

 

3.2 How competing models were compared 
 

The Akeike’s Information Criterion (AIC) is used to rank competing models. AIC 
penalizes models for too many parameters. A model is considered to have significantly 
improved if the AIC values drop by 2 or more. 
 

Furthermore, the networks formed were classified into breeding, non-breeding 
and ‘in-between’ season. A network was classified into the breeding season if the 
trappings occurred between April and October.  Otherwise it was classified into the 
non-breeding season. If trappings occurred in the months of, April and October, they 
were neither classified into the breeding season nor the non-breeding season, but into 
the ‘in-between’ season instead. 
 

Therefore, the choice of the model and hence the number of parameters was 
based primarily on the minimization of the AIC statistics.  
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3.3 Discussion 
 

The maximum likelihood estimates of c and λ or c, λ, M, F and m or c, λ, MM, MF, 
Mm, FF, Fm, and mm are the values that minimize the AIC for the two parameter model, 
five parameter models or eight parameter model respectively, because the estimates 
maximize the log likelihood for the model.  Also larger numbers of parameters in the 
model do not result in a better fitted model, because estimation of too large a number of 
parameters introduces estimation errors that adversely affect the use of the fitted 
model. 
 

Figure 5a) shows the change in the AIC values for the 3 different five parameter 
models fitted to the data. This is relative to the two parameter model for the networks 
that were formed from the trappings that occurred in the breeding season.  
 

The drop in the AIC values for the five parameter models relative to the two 
parameter model is significant for most of the networks during the breeding season. 
Furthermore, for those networks where the AIC value drops, on most occasions, the five 
parameter (Model 3) appears to outperform the other two five parameter models. 
 

Contrary to the above, there is no significant improvement in the AIC values for 
the eight parameter model for the networks that were formed from the trappings that 
occurred in the breeding season. 
 

Figure 5b) shows the change in the AIC values for the various models fitted to 
the data, relative to the two parameter model for the networks that were formed from 
the trappings that occurred in the non-breeding season. There was no significant 
improvement in the AIC values from the two parameter model for the non-breeding 
season, except once when the five parameter (Model 3) performed better relative to the 
two parameter model in November. 
 

Similar to the non-breeding season, there was not much improvement in the AIC 
values over the two parameter model for the ‘in-between’ season. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 - change in the AIC values, for the 3 different five parameter models fitted to the data, relative to the 
two parameter model, for the networks that were formed from the trappings that occurred in the        a)  
breeding season and b) non – breeding season. 
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4. Conclusion 
 

The aim of incorporating spatial constraints and individual heterogeneity is to 
better understand the contact networks on which infectious disease spreads.  Most rate 
of contact models assume random mixing in the contact process of wildlife. However, 
significant supporting evidence suggests that the underlying structure of contact 
networks is far more complex than the simple random mixing of hosts’ model for the 
rate of contact. Such models will likely make wrong or misleading predictions and hence 
may hamper management of wildlife disease rather than improve it. If the node is for 
instance a Big Male vole, is it more mobile than the rest of the nodes in the network.  
 

There is significant evidence that by incorporating the spatial constraints and 
individual heterogeneity into the model to obtain the rate of contact, there is an 
improvement to the constant rate of contact. 
 

In the future, it may be advantageous to apply the same models to the remaining 
sites to obtain affirmation that models fit well.  The study of the reproductive status of 
voles may also provide further improvement. In addition, studying the assortativity of 
the networks will enable us to understand how well connected the hubs are in the 
network. 
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