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1. Introduction.

1.1. Rhythm. Whenever we consider music, the very natural notion of a rhythm
comes to mind. Given pitch and melody, a rhythm applies structure to a song. A
rhythm is most commonly associated with a periodic pattern of note onsets and
rests, and is so treated as a cyclic phenomenon [4, 5, 6]. This is a repeat of one or
more lengths of music, or bars, traditionally notated on a staff as a series of notes,
for example

or as commonly written down by percussionists with a series of x’s and .’s

|: x . . x . . x . :|

As we frequently consider two rhythms as the same if they coincide under a cyclic
permutation, it is also convenient to view a rhythm as a subset R ⊆ Zn (for some
n); so the above rhythm would be {0, 3, 5} ⊆ Z8. Rhythms under this definition
are more precisely called cyclic rhythms.

Yet another convenient way to represent a rhythm R ⊆ Zn is as a binary word—
the characteristic sequence of R—with 1’s denoting a beat onset, and 0’s denoting
a rest, for example the rhythm above has characteristic sequence

(10010010).

In building a rhythm for a melody, one desires to create a pulsed, evenly spaced
feel, giving rise to this cyclic and repetitive structure. The common 4/4 rock beat
found in most popular culture songs follows this simple idea, built from the trivial
rhythm

(10101010).

Other rhythmic forms of music have developed lilting effects by having slightly
“staggered” patterns such as the Bossa Nova

(1001001000100100),

the Samba

(101011011010),

and the Habenera (such as the classic example from Bizet’s Carmen)

(10011010).
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2. Cyclic Rhythm

2.1. Necklaces and symmetry. When looking at cyclic rhythms, a somewhat
convenient process is to consider the rhythm as a necklace with black colourings
signifying note onsets, and white colourings rests. Two rhythms are considered
to be instances of the same rhythm necklace if their necklaces are equivalent up
to symmetry. Recalling Burnside’s Lemma, we can easily count the number of
different Rhythm necklaces of a given metre with k note onsets.

Theorem 2.1. (Burnside’s Lemma; see Chapter 21 of Biggs [2] for instance.)
Let a finite group G act on a finite set S; for each g ∈ G, define fix(g) to be the
number of elements s ∈ S such that g · s = s. Then the number of orbits that G
induces on S is given by

1

|G|
∑
g∈G

fix(g).

We can now introduce a specific class of rhythms which we will call an Asym-
metric Rhythms.

Definition 2.2. An `-Asymmetric Rhythm is a rhythm that cannot be broken into
` equal duration parts such that a note onset occurs at the beginning of each part.

As an example, the paradiddle rhythm, a common percussionist exercise, is a
2-asymmetric rhythm:

(1001 0110) (1011 0100)
(1101 0010) (1010 0101)

No matter the cyclic variation, starting the splitting the rhythm into 2 equal parts
forces one part to begin with a rest.

These asymmetric rhythms were treated by Hall and Klingsberg [6], who give a
proof of the following theorem.

Theorem 2.3. The number of `-asymmetric rhythm cycles of length M = `n is
given by

|Rn
` | =

1

M

 ∑
d|M

gcd(d,`)>1

φ(d) +
∑
d|n

gcd(d,`)=1

φ(d)(`+ 1)n/d


where φ(d) denotes Euler’s totient function, counting the number of integers x with
1 ≤ x ≤ d and x, d relatively prime.

2.2. Euclidean Rhythm. How does one select “natural rhythms” from the many
possibilities? One reasonable consideration is to ask that onsets be distributed as
evenly as possible. This constraint leads to one of the more interesting mathemat-
ical contributions to the study of rhythms. As it turns out, a number of other
“naturalness” conditions lead to the same constraint, and many famous rhythms
turn out to have the property. These various conditions have been studied by sev-
eral authors, but the final culmination of the investigations seems to have occurred
the article by Demaine, Gomez-Martin, Meijer, Rappaport, Taslakian, Toussaint,
Winograd and Wood [5]. To make sense of their main result we need to introduce
several further concepts, starting with the notion of a geodesic in Zn.
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Strictly speaking, the elements of Zn are equivalence classes modulo n, however
we continue to abuse notation and allow any i ∈ Z to stand as a representative of
its congruence class. We may now define a standard order on Zn by i < j if the
smallest non-negative integer equivalent to j mod n is greater than the smallest
non-negative integer equivalent to i mod n. For example, under this order, 3 < −2
in Z8 as −2 is equivalent to 6 mod 8. This enables a notion of “geodesic distance”
between to elements of Zn.

Definition 2.4. For a given rhythm R ⊆ Zn, the geodesic distance between two
onsets i, j ∈ R is min{j − i, i − j}, as calculated relative to the standard order on
Zn. The onset difference sum of R is the value of∑

i<j i,j∈R

d(i, j)

For a pair of positive integers n > k, the Euclidean (n, k)-rhythm is a k-subset
of Zn that maximises the onset difference sum. Demaine et al. [5] show that this is
unique up to cyclic rotation.

Before we state the main theorem of this section, we need a further concept: the
Bjorklund algorithm [3], which arose in an apparently unrelated context: timing
systems in neutron accelerators!

Bjorklund’s algorithm begins with two numbers k < n, and outputs a word in
the alphabet 0, 1 of length n (which we may think of as the characteristic sequence
of a rhythm). We describe the algorithm by example only: in the case k = 3 and
n = 8.

We begin by writing down the 3 onsets, along with the remaining 8−3 = 5 rests:

(1)(1)(1)(0)(0)(0)(0)(0).

We then distribute the 0’s amongst the 1’s (from the right) as follows

(10)(10)(10)(0)(0)

and repeat this distribution process until only one block remains:

(100)(100)(10) then (10010)(100) then (10010100).

(In fact, up to cyclic equivalence, one can halt—and concatenate—when the next
iteration will produce only a cyclic variation of the previous one).

Finally, the cutting sequence of a line through the origin, is the sequence obtained
by taking a walk in the integer lattice, staying as close as possible to the line
(without crossing it): horizontal steps are written as 0 and vertical steps are written
as 1. Figure 1 gives an instance of a cutting sequence for a line of slope equal to
the golden ratio. A line of rational slope yields a repeating pattern.

The following key result lists three of the numerous equivalent conditions estab-
lished in [5, Theorem 4.1].

Theorem 2.5. For n > k positive integers, the Bjorklund algorithm outputs the
Euclidean (n, k)-rhythm which coincides with the cutting sequence of a line of slope
(n− k)/k.

If k|n then one obtains the obvious rhythm dividing n beats into k equal parts. In
other instances uneven breaks are forced and the situation becomes far less trivial.

Two well known instances of uneven (but “maximally spaced”) rhythms are as
follows.
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Figure 1. The cutting sequence of the golden ratio: 01001010010010100101 . . . .

• 10010010. One of the most famous lilting rhythms in folk, world music and
modern popular music. Some examples include Metallica’s Orion (guitar
riff), Elvis Presley’s Hound Dog (bass line), Kate Bush’s Wuthering Heights
(melody and piano).
• 1001001000100100. The Bossa Nova rhythm.

The article [5] lists instances of Euclidean rhythms in essentially every case with
small n and k.

While Euclidean rhythms do seem to be very natural, it is important to note that
not all famous uneven rhythms are Euclidean. Many of the most common Flamenco
music rhythms (such as Siguiriyas and Bulerias) are based around rhythms that are
not Euclidean; various cyclic permutations of 33222 are particularly common.

3. Acyclic Rhythm

While our definitions fixed the notion of rhythm as a finite pattern (to be re-
peated), there are a number of very natural infinite patterns that exhibit strong
similarities to the finite case, and make for some challenging variation to the notion
of rhythm. For convenience, we group these as “acyclic rhythms”. In essence then,
an acyclic rhythm is any subset of Z or N. As before, it is usually convenient to
consider these infinite “rhythms” by characteristic sequences. Thus the periodic
case of even numbers in N is represented as 01010101 . . ., while the prime numbers
would be represented as 011010100010 . . ..

We look at two instances of acyclic rhythms that exhibit very strong finiteness
properties.

3.1. Uniform recurrence. An infinite sequence σ is uniformly recurrent if for
every n there is an m such that every block of length n within σ occurs within each
block of length m in σ (the concept comes from dynamical systems). One of the
most famous instances of such a sequence is the Thue-Morse sequence, see Allouche
and Shallit [1]; which is the infinite word generated by the morphism

µ :
0 7→ 01
1 7→ 10.
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The fixed point of this morphism is the word

01101001011010011001011010010110 . . .

This is an example of a fixed point rhythm, which holds the interesting property of
overlap free, as it avoids the patterns αβαβα and ααα [7].

The rhythmic pattern generated by the Thue-Morse sequence can easily be iden-
tified as a variation of the common paradiddle rhythm, which which when analysed
by subwords, is itself a paradiddle of paradiddles, revealing a fractal type nature.
This ensures an interesting rhythm which continually changes and never repeats
itself, whilst still remaining uniformly recurrent.

3.2. Sturmian Words. Another example of an acyclic rhythm can be generated
from the Fibonacci word by the morphism

f :
0 7→ 01
1 7→ 0

The word f is said to be balanced and aperiodic as f does not contain a palindrome
w such that both awa and bwb exist within f . This is equivalent to saying that f
is Sturmian [7, Theorem 2.1.5].

Definition 3.1. A Sturmian word is an infinite word over a binary alphabet that
has exactly n+ 1 factors of length n for each n ≥ 0.

We can think of Sturmian rhythms as being the infinite, non-repeating cousins
of our Euclidean Rhythms, as their construction is very much the same in the use
of a cutting sequence; but instead forming a rational slope from the desired metre
and number of note onsets, we use an irrational slope.
From a purely artistic view, the rhythms generated in this fashion are very inter-
esting, which a feeling of common structure, with little complexity, whilst always
remaining non-repetitive.

4. Conclusion

We can analyse rhythms mathematically for their periodic patterns, and explore
what can be considered as interesting rhythms such as Asymmetric and Euclidean
rhythms. These are found throughout contemporary, classical and world music; and
while they are not the only apparent “natural” instances of rhythm, they contain
strong and sometimes subtle mathematical structure.

The idea of Aperiodic Rhythms can be introduced such as the uniformly recur-
rent rhythms, or the minimum complexity Sturmian Rhythms. Future work could
involve stronger characterisation of these new rhythms, as well as time spent com-
posing music specifically built around such concepts to gain insight into the validity
of how these mathematically induced ideas stand up to artistic scrutiny. Another
area of further investigation would be into finding other “natural” ideas of rhythm
that are also found throughout the music of today, and to further characterise them
with the tools of algebra and group theory.

Working on this project has been of great benefit in gaining insight into a lighter
side of the maths of the world around us, as well as giving me a great experience
in research and presenting my work to my peers. It was also great to meet other
people who share the same enthusiasm in mathematics.

Thanks goes to CSIRO and AMSI for their generous support, and also to my
supervisor Dr. Marcel Jackson.
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