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1 Introduction

The theory of C∗-algebras was first developed in the 1940’s through the study of oper-
ators arising in quantum mechanics. They have since become their own important area
of research in the field of functional analysis. C∗-algebras do not have a classification
theorem and so examples are important in trying to analyse and classify the structure
of these abstract spaces. Following the lead of directed graph C∗-algebras, my project
aimed to construct C∗-algebras from an object in geometric group theory known as a
graph of groups. These are a key tool for determining the structure of infinite groups.
Bass-Serre theory provides an equivalence between graphs of groups and quotients of a
group actions on trees. We aimed to exploit the dynamics of this action in constructing
a universal C∗-algebra associated to a graph of groups.

The overall goal of my project was to try and generate a universal C∗-algebra,
C∗(G), from a graph of groups G in such a way that an analogue of the following
theorem about directed graph C∗-algebras holds.

Theorem 1.1. Let E be a directed graph with universal covering tree T . Let ∂T be
the boundary of T and π1(E) the fundamental group of E. Then,

C∗(E) ∼sme C0(∂T ) o π1(E)

where ∼sme is strong Morita equivalence.



2 Our Example

In search of a general procedure to generate a universal C∗-algebra from a graph of
groups, my project focused primarily around one particular graph of groups G = (Γ, G);
a loop with Z on both the vertex v and edge e with the maps αe and αē being the
identity and Z 7→ mZ respectively. This can be visualised by:

Z = 〈b〉Z = 〈a〉

αē : a 7→ b2

αe : a 7→ b

The fundamental group of G is the Baumslag-Solitar group [3], BS(1,m) := 〈te, b|teb =
bmte〉 and the universal covering tree TG associated to G is an infinite complete binary
tree.
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The boundary of the universal covering tree is given by:

∂TG = {g1x1g2x2 · · · : xi ∈ {e, ē}, gi ∈ Txi , r(xi+1) = s(xi),

and xi+1 = xi =⇒ gi+1 6= 0}.

which is a topological space of tail equivalent paths, homeomorphic to the m-adic
numbers Qm.We denote by ∂T ∗G the set of finite paths:

∂T ∗G = {g1x1 . . . gnxn : xi ∈ {e, e}, gi ∈ Txi , r(xi+1) = s(xi),

and xi+1 = xi =⇒ gi+1 6= 0}.



For each µ ∈ ∂T ∗G we denote by Z(µ) the cylinder set Z(µ) = {g1x1 · · · ∈ ∂TG :
g1x1 . . . g|µ|x|µ| = µ}.

There is a natural action γ : BS(1,m)→ Aut(TG) given by Bass-Serre theory [2,5].
This extends to an action on ∂TG and induces an action γ : BS(1,m)→ Aut(C0(∂TG)),
where C0(∂TG) is the continuous functions vanishing at infinity on the locally com-
pact space ∂TG, a commutative C∗-algebra. We can then form the C∗-dynamical
system (C0(∂TG), BS(1,m), γ) which enables us to construct the crossed product,
C0(∂T ) oγ BS(1,m) [1].

We aim to use a Cuntz-Krieger construction to build our universal C∗-algebra,
similarly to directed graph C∗-algebras. We assign e and ē partial isometries se and
sē, v the identity 1 and to b, the generating element b of Z we assign the unitary ub.
Then C∗(G) := span{se, sē, 1, ub} subject to the relations,
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We proposed the following lemmas,

Lemma 2.1. Let:

se := iA(XZ(1e))iH(te),

se := iA(XZ(1e))iH(te)
∗, and

ub = iH(b),

Where XS is the indicator function on a the set S and (iA, iH) is the covariant homo-
morphism which generates C0(∂T )oγBS(1,m).Then se, se and ub satisfy the previous
relations.

For each µ = g1x1 . . . gnxn ∈ ∂T ∗G we denote sµ := ug1sx1 . . . ugnsxn ∈ C∗(G).



Lemma 2.2. There is a non degenerate representation ρ : C0(∂TG) → C∗(G) charac-
terised by:

ρ(XZ(µ)) = sµs
∗
µ for each µ ∈ ∂TG,

and a unitary representation v : BS(1,m)→ C∗(G) satisfying:

vte = se + s∗e and vg = ug for each g ∈ Gv
∼= Z.

Moreover, (ρ, v) is a covariant representation.

These lemmas suggest some sort of equivalence between C∗(G) and C0(∂TG) oγ

BS(1,m).

3 General case

In the future we plan on extending the results we obtained to a more general case. For
a general graph of groups G = (Γ, G) we assign each edge e ∈ Γ a partial isometry se,
each vertex v ∈ Γ we assign a projection pv, and for each g in the vertex groups Gv we
assign a partial unitary ug. We believe the relations for this case should be,
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∗
ē
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