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1 Introduction

The Autoregressive Conditional Duration (ACD) model (developed by Engle and Rus-
sell (1998)) and its variations are used for analysis of data which arrive at irregular
time intervals. In particular, they have been used heavily in finance to model irregu-
lar time intervals between trades or price changes of stocks. Many financial theories
focus on transaction-by-transaction basis, so the timing of these transactions can be
essential for understanding the economics. An important application of the model
is to measure and forecast the duration of transaction arrivals, which is essentially
the instantaneous quantity of transactions. The model parameterises the conditional
duration as a function of the time between past events. It is the dependence of the
conditional duration on past time intervals, which suggests that the model be called
the autoregressive conditional duration (ACD) model.
Section 2 introduces the ACD model, and discusses some properties and constraints,
while Section 3 introduces the log-ACD model, which is a more flexible variate of the
ACD model. Section 4 describes four conditional probability distributions (the ex-
ponential, Weibull, generalised gamma and truncated skewed student-t distributions).
In Section 6, these distributions are used to simulate data using the ACD and log-
ACD models. The properties of the maximum likelihood estimator of the parameters
are also discussed in Section 6. Finally, the models are fitted to a dataset containing
transaction durations of IBM stock, and these models are compared in Section 7.



2 The ACD Model

The Autoregressive Conditional Duration (ACD) Model was developed by Engle and
Russell (1998) to model irregular time intervals between trades. We let xi = ti − ti−1

denote the duration between the (i − 1)th and the ith trade. We further let ψi =
E(xi|Fi−1) be the conditional expectation of xi given Fi−1, the information set available
at the (i− 1)th trade, which contains at least x̃i−1 and ψ̃i−1, where x̃i−1 denotes xi−1

and its past values, and likewise for ψ̃i−1.
The ACD model is defined by:

xi = ψiεi (1)

where εi is a sequence of independent and identically distributed (i.i.d) non-negative
random variables such that E(εi) = 1. εi can be chosen to follow many distributions
such as the exponential or Weibull distributions (to be discussed in Section 3). Further
ψi has the form:

ψi = ω +

p∑
j=1

αjxi−j +

q∑
j=1

βjψi−j (2)

This model is called an ACD(p,q) model.
Note that ηi = xi − ψi is a martingale difference sequence, that is E(ηi|Fi−1) = 0.
Substituting into equation (2), and assuming that αj = 0 for j > p and βj = 0 for
j > q we get

xi = ω +

max(p,q)∑
j=1

(αj + βj)xi−j −
q∑
j=1

βjηi−j + ηj (3)

This model is now in the form of an ARMA process with non-Gaussian errors/innovations.
Now, taking expectation on both sides of equation (3) (note thatE(ηi) = E(E(ηi|Fi−1)) =
E(0) = 0), and assuming that the model is weak stationary (that is, has a constant
mean and that the covariance function depends only on the difference between t1 and
t2, and not the actual values of t1 and t2), we get:

E(xi) =
ω

1−
∑max(p,q)

j=1 (αj + βj)
(4)

Hence, to satisfy the requirement that the expected duration is positive, we require
that ω > 0 and 1 >

∑
j(αj + βj). Moreover, to ensure positivity of the conditional

durations, we also require that β ≥ 0 and α ≥ 0.



3 The Logarithmic-ACD Model

We now introduce the logarithmic version of the ACD model. This model is considered
more flexible than the original ACD model as we do not require the coefficients to be
positive. Again, we let xi denote the duration between the (i− 1)th trade and the ith
trade. The log-ACD model can be expressed as:

xi = exp(φi)εi (5)

φi = ω +

p∑
j=1

αjlog(xi−j) +

q∑
j=1

βjφi−j, (6)

where exp(φi) is the conditional expectation of the duration at observation i i.e.
E(xi|Fi−1) = exp(φi), and εi is a sequence of independent and identically distributed
(i.i.d) non-negative random variables such that E(εi) = 1.
We can rewrite (5) as:

logxi = φi + µi (7)

where µi = logεi.

4 Conditional Distributions

We now consider several distributions for εi, namely the exponential, Weibull, gener-
alised gamma and truncated skewed student-t distributions. The generalised gamma
(η, λ, κ) distribution has a shape parameter η, scale parameter λ and a third param-
eter κ. The Weibull (λ, η) distribution is a special case of the generalised gamma
distribution with κ = 1, and the exponential distribution is a further special case with
κ = η = 1. We also consider the truncated skewed student-t distribution. Recall
that for both the ACD and the log-ACD models, we require that E(εi) = 1, thus we
consider the standardised distributions.
The log-likelihood function is defined by

l(θ|x) =
T∑
i=1

logf(xi; θ)

where θ is a vector of parameters. Table 1 shows the standardised pdfs for each of
these distributions, while Table 2 shows the log-likelihood functions.
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Table 1: Standardised probability density formula

log-likelihood l(β|x)
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Table 2: Log-likelihood formula for the ACD(p,q) model

5 Markov Chain Monte Carlo (MCMC) Method

The MCMC method for sampling from a probability distribution, P (x), involves con-
structing a Markov chain whose equilibrium distribution is the (desired) target prob-
ability distribution. The state of the chain after a large number of steps is then used
as a sample of the target distribution. .
We now describe one particular MCMC method, the Metropolis−Hastings algorithm.

• First, choose an arbitrary probability density Q(x′|xt), called the proposal dis-
tribution (We chose the proposal distribution to be the standard normal distri-
bution), which suggests a new sample value x′ given a sample value xt. This
proposal density is symmetric, that is, Q(x′|xt) = Q(xt|x′).



• Choose an arbitrary point x0 as the first sample.

• Then, to generate a new sample point xt+1 given the most recent sample point
xt, we perform the following algorithm:

1. Generate a proposed new sample value x′ from the proposal distribution
Q(x′|xt)

2. Calculate the acceptance ratio, α = P (x′)
P (xt)

, then let r = min(1, α)

3. Accept x′ with probability r. That is, pick a uniformly distributed random
number u between 0 and 1, and if u ≤ r, set xt+1 = x′, else set xt+1 = xt

Note that the acceptance ratio α indicates how probable the new proposed sample is
with respect to the current sample, according to the distribution P (x). As it takes
many steps for the Markov Chain to reach its equilibrium distribution, we introduce a
’burn-in’ period, where the first M (we take M = 5000) samples are thrown away.

6 Simulation and Estimation

We use a Markov Chain Monte Carlo Method (MCMC) to simulate data from the
desired distribution (standardised to have unit mean) of εi. We generated 2000 series,
each consisting of 500 observations firstly from the ACD(1,1) model given by:

xi = ψiεi, ψi = 0.3 + 0.2xi−1 + 0.7ψi−1 (8)

and then the log-ACD(1,1) model given by:

xi = exp(φi)εi, φi = 0.3 + 0.2xi−1 + 0.7ψi−1 (9)

using the exponential, Weibull, generalised gamma and truncated skewed student-t
distributions for εi. Figure 1 shows time series plots for each of the ACD and log-ACD
models.
A Maximum Likelihood estimation (MLE) procedure was used to estimate the param-
eters of the simulated ACD and log-ACD models. The MLE is defined by:

θ̂mle = arg max
θ

l(θ|x)

where θ is a vector of parameters of interest, and l(θ|x) is the associated log-likelihood
function.



The average of the 2000 estimates for each parameter are given in Table 3. Histograms
of these estimates for each parameter are given in Figures 2, 3 and 4. These histograms
imply that the maximum likelihood estimates follow a roughly normal distribution.

Parameter ω α1 β1

True 0.3 0.2 0.7
EACD(1,1) 0.314 (0.037) 0.223 (0.032) 0.724 (0.037)

SktACD(1,1) 0.311 (0.038) 0.225 (0.031) 0.727 (0.036)
WACD(1,1) 0.310 (0.037) 0.229 (0.029) 0.732 (0.033)
GACD(1,1) 0.317 (0.038) 0.218 (0.035) 0.718 (0.039)

log-EACD(1,1) 0.319 (0.023) 0.239 (0.030) 0.740 (0.033)
log-SktACD(1,1) 0.314 (0.022) 0.239 (0.032) 0.738 (0.034)

log-WACD(1,1) 0.316 (0.020) 0.252 (0.032) 0.722 (0.034)
log-GACD(1,1) 0.320 (0.038) 0.235 (0.030) 0.746 (0.034)

Table 3: Mean MLE for 2000 simulated ACD and log-ACD, each with 500 observations
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Figure 1: Simulated ACD(1,1) and log-ACD(1,1) series
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Figure 2: Histogram of the ML estimates of ω generated by 2000 iterations of each
ACD(1,1) and log-ACD(1,1) series given by (15) and (16), each of length 500
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Figure 3: Histogram of the ML estimates of α1 generated by 2000 iterations of each
ACD(1,1) and log-ACD(1,1) series given by (15) and (16), each of length 500
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Figure 4: Histogram of the ML estimates of β1 generated by 2000 iterations of each
ACD(1,1) and log-ACD(1,1) series given by (15) and (16), each of length 500



7 IBM dataset example

We consider the transaction durations of IBM stock on five consecutive trading days
from November 1 to November 7 1990. We have 3534 observations. A time series plot
of the series is given in Figure 6.
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Figure 5: Time series plot of IBM stock traded in the first five trading days of November
1990

We fitted each ACD(1,1) and log-ACD(1,1) model described in the previous section
to the IBM data, and the results are given in Table 2. For each model the first 2534
observations xi for i = 1, . . . , 2534 were used to generate the model from which 1000
forecasted values x̂i for i = 2535, . . . , 3534. The Mean Squared Error (MSE) for each
model was then calculated using the 1000 forecasted values and comparing them to
the final 1000 real observations. This procedure is called the in-sample out-of-sample
error, and is calculated by:

MSE =
1

n

∑
i

(x̂i − xi)2

From the MSE values in Table 4., it appears that the log-WACD model is the best fit
for the data, and is given by:

xi = exp(φi)εi φi = 0.111 + 0.068 log(xi) + 0.874φi−1



ω α1 β1 MSE

EACD(1,1) 0.189 (0.055) 0.078 (0.012) 0.864 (0.024) 32.432

WACD(1,1) 0.166 (0.055) 0.075 (0.012) 0.873 (0.025) 33.026

GACD(1,1) 0.114 (0.039) 0.071 (0.012) 0.896 (0.018) 40.216

SktACD(1,1) 0.147 (0.051) 0.074 (0.012) 0.886 (0.022) 48.278

log-EACD(1,1) 0.117 (0.026) 0.070 (0.010) 0.869 (0.026) 30.508

log-WACD(1,1) 0.111 (0.026) 0.068 (0.011) 0.874 (0.027) 29.838

log-GACD(1,1) 0.122 (0.032) 0.073 (0.013) 0.862 (0.033) 32.552

log-SktACD(1,1) 0.122 (0.022) 0.065 (0.009) 0.877 (0.020) 33.467

Table 4: Maximum likelihood estimates for the parameters of various ACD(1,1) models
when fitted to the IBM dataset. Associated standard deviations are in parentheses

8 Conclusion

The aim of this project was to study the ACD and log-ACD models under various
probability distributions. Through extensive simulation, it is clear that the log-ACD
model is much easier to deal with due to increased flexibility in the parameters. More-
over the maximum likelihood estimator obtains quite good estimates of the parameters,
however the MLE does appear to overestimate the parameters, for reasons unknown
at this point.
Through analysis of the IBM dataset, it was found that the model which best fitted
the data was the WACD(1,1) model (The ACD model using a Weibull distribution).
This could be used to predict future transaction durations for IBM.
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