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Abstract

This report provides a brief overview of the objects involved in the geometric
Langlands conjecture. It provides a summary of my research project over the
course of the AMSI Vacation Scholarship in 2013/14. The final section looks at
how this has developed into my Honours project for the remainder of this year.

1 Introduction

The global geometric Langlands correspondence (in various formulations) is a conjec-
tural link between LG-local systems on a Riemann surface X (where LG is the Lang-
lands dual group — a group defined in terms of G as defined in e.g. [Bou08, Fre07a],
and certain D-modules on the moduli stack BunG of principal G-bundles on X for a
general reductive group G. There are multiple conjectured versions of this correspon-
dence, for example the categorical geometric Langlands conjecture, which conjectures
this link is a functor between derived categories of these objects, however this will not
be looked at in this report.

There is also a local correspondence in the geometric case. This conjectures a
link between LG-local systems on discs around a point x ∈ X to subcategories of
the category of ĝκ modules, where ĝκ is the affine Kac-Moody algebra of g (a central
extension of Lg). This concerns the local information about the global objects in the
global correspondence, as the discs are defined so that the functions on them correspond
to the formal Laurent series around a point, and the Lie algebras are linked to the D-
modules by the Beilinson–Bernstein correspondence which is mentioned in section 3.



The geometric Langlands correspondence is a geometric analogue of the arithmetic
global Langlands correspondence which conjectures a link between the absolute Galois
group Gal(F/F ) of an algebraic number field F and certain automorphic represen-
tations. When rewritten in the case of other global fields - that is function fields
over an algebraic curve over a finite field it can be reformulated geometrically. This
geometric reformulation also makes sense for curves over C and this gives the geomet-
ric case [Fre07b]. Currently the non-categorical version is proven only for the case
G = GL(n,C).

2 Geometric Abelian Class Field Theory

This section provides a brief description of geometric class field theory based on that
in [Lau02].

The Jacobian J(X) of a compact, connected, Riemann surface X, is the moduli
space of line bundles of degree zero. For a line bundle L on a Riemann surface X and
any non-zero meromorphic section s : X → L, the degree of L is the number of poles
of s minus the number of zeros of s (counting multiplicities). The trivial bundle is
hence clearly an example of a line bundle of degree zero, as can be seen by taking a
non-zero constant section. For a Riemann surface X the Jacobian is a complex torus
of dimension equal to the genus g of X, so J(X) = Cg/Λ, for a lattice Λ which can be
calculated using topological properties of X.

There is a product m on the Jacobian which corresponds to taking the tensor
product of line bundles. This is the product on the Picard variety, a variety which
parametrises all line bundles on X.

We can also use the topological properties of X to give a map φ : X → J(X) which
maps a chosen point x0 to the group identity (the point zero in the torus).

The following theorem gives abelian class field theory. A rank one local system
refers to a line bundle with a flat connection, and local systems are described further
in section 3. Consider the standard projections π1, π2 : X × X → X, then for line
bundles E1 and E2 over X we define their exterior tensor product E1�E2 over X×X
to be the vector bundle π∗1E1 ⊗ π∗2E2.

Theorem 2.1. For each rank one local system E on X there exists a unique rank one
local system AutE on J(X), with φ∗AutE = E and m∗AutE ∼= AutE � AutE.

We can now outline how these objects correspond to the geometric Langlands cor-
respondence for an arbitrary group GL(n,C) for n = 1. For other values of n we
change the rank one local system E to a rank n local system. However the rank one



local system on J(X) changes more drastically. It is replaced by a D-module on the
moduli space of vector bundles of rank n on X which transforms in certain ways under
a class of functors known as the Hecke functors. This raises the question of why in the
n = 1 case we only define AutE on J(X) rather than on the Picard variety Pic(X)
which is the moduli space of rank one vector bundles. The reason for this is that in the
one dimensional case the way that that AutE transforms under Hecke functors allows
the construction of a D-module on the components of Pic(X) which correspond to line
bundles of degrees other than zero.

3 D-modules and Local Systems

We now introduce D-modules. A D-module is a type of sheaf, we first define a sheaf;

Definition 3.1. A sheaf F on a topological space Y is a functor that associates to
each open set U ⊂ Y an object F(U) of some category C, and to each inclusion U ⊂ V
of open sets a restriction morphism rU,V : F(V) → F(U), such that the following
conditions are satisfied:

1. rU,U = IdU .

2. For U ⊂ V ⊂ W , rU,V rV,W = rU,W .

3. For an open cover {Ui}i∈I of a set U if for s, t ∈ F(U), rUi,Us = rUi,U t ∀i ∈ I
then s = t.

4. For an open cover as in the above condition, with a element si ∈ F(Ui) ∀i such
that ∀i, j ∈ I rUi∩Uj ,Ui

si = rUi∩Uj ,Uj
sj then there is an element s ∈ U such that

rUi,Us = si for all i.

An example of a sheaf is given by the sheaf of continuous functions on any topo-
logical space.

An example of a sheaf of rings (that is to say that F is a functor to the category
of rings) is the sheaf of differential operators, D, on a manifold X.

AD-module F (over a manifoldX) is a sheaf of modules over the sheaf of differential
operators on X, that is to say F(U) is a module over D(U) for every open set U ⊂ X.
In the case here the topological space in question is a stack, the way that the topology
and the sheaf of differential operators can be defined on a stack is given in [Góm01].

These D-modules are the analogues of automorphic representations in the arith-
metic case [Fre07b]. Another link to representations is given by Beilinson–Bernstein



localisation. Beilinson–Bernstein localisation gives a link between D-modules and the
representations of certain Lie algebras.

Let G be a reductive algebraic group, a Borel subgroup B is a subgroup that is
maximal in the family of connected, solvable, closed subgroups of G. The flag variety
of an algebraic group G is the algebraic variety X = G/B. The action of G on X gives
an infinitesimal action of g on the functions on any subset U ⊂ X, i.e. an action on the
space of sections of the trivial line bundle X ×C over X. This maps g to the tangent
space of X. From this we can induce a map from the universal enveloping algebra of
g to the sheaf of sections of X. Pulling back this map gives a map

Λ∗ : Mod(DX)→ Mod(U(g)),

where U(g) is the universal enveloping algebra of the Lie algebra g [Bou08].
The Beilinson–Bernstein theorem states that there is also a map

∆ : Mod(U(g))→ Mod(DX).

Furthermore we can look at D-modules not over sections of the trivial line bundle,
ie. functions X → C but also over other line bundles, and the topological properties
of the line bundle can be used to derive properties of the module over U(g) [HT08].
The functor given by Beilinson-Bernstein can be used to relate the subcategories of
the category of ĝκ-modules to the D-modules on BunG, as is outlined in [Fre07a].

The Hecke functors act on the D-modules on BunG in such a way that we can
introduce the notion of eigen-D-modules, with the eigenvalue being a LG-local system
on X. Hence we can link each Hecke eigen-D-module to a local system - specifically
the local system that is its eigenvalue. The geometric Langlands correspondence con-
jectures that we can also link LG-local systems E to a Hecke eigen-D-module on BunG
with eigenvalue E [Fre07b].

We now introduce the local systems which the geometric langlands correspondence
links certain D-modules to. The local systems are related to homomorphisms of the
fundamental homotopy group of the curve X to the Langlands dual LG. We will now
illustrate how this works for the case where G =L G = GL(n).

A local system on a Riemann surface X is equivalent to a vector bundle E on X,
with a flat connection, that is a connection ∇α such that [∇α,∇β] = ∇[α,β] is satisfied,
where α, β ∈ Γ(TX).

A connection allows us to gain a vector in Ey associated to a given vector in Ex given
a path between the points x, y ∈ X. In the case that x = y we are hence associating
a path starting and beginning at x to a transformation of the vector space Ex. This
transformation is linear, and in the case when ∇ is a flat connection has the property



that homotopy equivalent paths will give the same linear transformation of Ex. Thus
a local system corresponds to a representation π1(X, x)→ GL(Ex) = GL(n,C).

4 Links to Electromagnetic Duality

This section outlines the recent links found between electromagnetic duality and the
geometric Langlands program in [KW06]. For more details on these links see e.g.
[Fre09,KW06].

The Maxwell equations for electromagnetism, in a vacuum (under suitable choice
of constants made possible by scaling) are given by

∇ · E = 0, ∇ ·B = 0, (1)

∇× E = −∂B

∂t
, ∇× E = ∂E

∂t
(2)

where E and B are the electric and magnetic fields respectively. These equations
are invariant under the transformation (E,B) → (B,−E). There are several other
versions of electromagnetic duality, in which a theory is invariant under this switching
of electric and magnetic fields, for example in the U(1) gauge theory (without sources)
describing electromagnetism.

However when describing physical theories we often need to use a Yang-Mills The-
ory, a gauge theory in which the gauge group is non-abelian, for example this is the case
for the standard model which has the non-abelian gauge group U(1)×SU(2)×SU(3).
In this case the conjectured Montonen–Olive duality [MO77] gives a duality between
the theory with gauge group G, and the theory with the gauge group LG with the
electric and magnetic fields switched, and certain constants modified.

The fact that electromagnetic duality links a group G with its Langlands dual group
LG suggested that electromagnetic duality might be linked to the Langlands program.
In [KW06] such a link is described, and this is outlined in the following paragraphs.

A topological field theory is a field theory in which the observables are invariant
under deformations of the metric [Loz99]. We can gain a four dimensional topological
field theory from N = 4, d = 4 supersymmetric Yang-Mills theory by a process known
as topological twisting, in which a supersymmetric operator Q is formed such that
Q2 = 0, and the state space of the resulting field theory is given by the cohomology of
Q, i.e.

Ker(Q)

Im(Q)
.



For this reason this type of topological field theory is also a cohomological field theory.
In the case that the base space is the product of two manifolds (each of dimension

2), ie X = Σ× C, we can shrink C, and take the limit as the area of C tends to zero
to gain a two dimensional topological quantum field theory.

This two dimensional theory is a type of sigma model called an A-model - its fields
correspond to maps from Σ to MH(G,C), the Hitchin Moduli space. The Hitchin
moduli space is the space of solutions (on C) to the Yang-Mills equations reduced to
two dimensions, however also have several other important descriptions linking it to
G-bundles on C, for an introduction to these see Garcia-Prada’s appendix to [Wel08].

If we now consider the topological field theory we get by applying the same process
to the theory that is dual to the original Yang-Mills theory started with under the
Montonen–Olive duality we get a B-model - its fields correspond to maps from Σ to
MH(LG,C). The duality between the original two Yang-Mills theories implies a duality
between certain branes in the A-model and the B-model, these branes correspond to
boundary conditions on the maps Σ→MH(G,C) and Σ→MH(LG,C). For example
in the first case a zerobrane is a point p ∈ MH(G,C), and applying this boundary
condition to γ ⊂ ∂Σ means requiring that a map maps γ to the point p. It is suggested
that the A-branes correspond to D-modules, and this allows the link between A-branes
and B-branes given by Montonen-Olive duality to be seen as geometric Langlands
duality, albeit written in a different form. With regards to the duality between the A
and B-models there are still some open questions on how structures, such as fermion
bundles, on the manifold C behave with respect to this duality.

In [KW06] Montonen–Olive duality is applied to manifolds of the form X = Σ×C,
it would be interesting to see whether variations on this form of manifold, such as non-
trivial C-bundles over Σ, could also give dualities related to Langlands program. Also
in [Wit09] Witten outlines the idea of using a six dimensional conformal field theory
to give results about the Yang-Mills theories, and hence about geometric Langlands.
Given that two-dimensional conformal field theory has been used in the local Langlands
correspondence, see e.g. [Fre07b], it seems plausible that this could be linked to the
six dimensional conformal field theory Witten discusses.

5 Further Work

This year I will be studying towards an Honours degree at ANU, in which I will be
studying the paper [KW06] in greater depth to look further into the link between gauge
theory and geometric Langlands. I aim to look further into some of the questions raised
in the above section.
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