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Abstract

Cell aggregation is a phenomenon common to a wide variety of biological scenarios,
one of which is the formation of cell aggregates in liver tissue engineering. Hepatocytes are
the most numerous and important cells in the liver, and aggregate in vitro to form liver
tissue. Experimentally, liver tissue culturing is moving away from mono-layer techniques
in favour of three-dimensional environments. The latter facilitate growth of spheroid
aggregates, which are emerging as more promising in their structural similarity to organic
livers as well as their ability to retain functionality and viability. However, this shift is
not reflected in the mathematical literature, in which only two-dimensional models of
cell aggregation available. Agent-based modelling is increasingly becoming the method
of choice when applied to cellular mechanisms such as aggregation. Agent-based models,
discrete both in time and space, consist of a set of rules that dictate each cell’s state
given its previous state and that of neighbouring cells. Such a model is developed with
the aim of mimicking the spatial development and pattern formation observed during the
biological process of hepatocyte aggregation in vitro. A model of planar aggregation is
successfully implemented, and the first stages of three-dimensional aggregate formation
are modelled. We show how analysis of the spatial structure (using statistical measures)
of both the experimental and simulation domains could be used to to select the agent-
based rules that best mimic the cell biology, and hence allow us to gain more insight into
the nature of the biological interactions taking place.
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1 Introduction

The liver is one of the largest and most complex organs in humans, with over 500 different
functions. The potential for growing functional liver tissue in vitro for use in drug testing,
or in the longer term, use in liver-assistance devices or for transplant, is a very active area
of experimental research. Hepatocytes are liver cells that comprise approximately 80% of a
functional liver, and perform the majority of its biological functions (Green et al. 2010). As
such, culturing hepatocytes is an important initial step in the growth of liver tissue.

In order to implement the aforementioned applications, the cells in the culture must
remain alive (viable) and functional (differentiated) for extended periods. Given certain
conditions and culturing techniques, hepatocytes can aggregate to form liver tissue (see Figure
1), and these aggregated structures appear to enhance the functionality and viability of the
tissue compared with isolated hepatocytes (Green et al. 2010). Thus, investigating how to
promote such aggregation is in the interest of furthering this experimental research.

Historically, hepatocytes have been cultured using mono-layer techniques, producing pla-
nar aggregates. More recently, three-dimensional culturing techniques have been employed,
producing spherical aggregates, or spheroids. These spheroids are thought to better reflect
the architecture of an organic liver, mimicking certain structures particularly well (Abu-Absi
et al. (2004)). Whilst there is some detailed knowledge of the mechanisms by which hepato-
cyte cells form liver tissue, these are many aspects that have not been formalised. The goal
of this paper is to seek a better understanding of the hepatocyte aggregation process using
agent-based modelling.



(a) Initial State - 0 Hours (b) Later State - 48 Hours

(c) Multicellular liver spheroid

Figure 1: (a) and (b): Images from a time lapse movie provided by Tissue Engineering
Group, School of Pharmacy, The University of Nottingham (RJ. Thomas et al. (2006)). The
images show hepatocyte cells co-cultured with stellate cells (another type of cell in the liver)
forming spheroids. Hepatocyte cells are shown in yellow, stellates in light grey. (c) Scanning
electron micrograph of a multicellular liver spheroid (courtesy of L. Riccalton-Banks, Tissue
Engineering Group, University of Nottingham)



Morphogenesis describes the development of shape, pattern, or form in an organism. The
processes that underlie morphogenesis are rather complex, influenced by factors including
genetic determination, environmental influences and interactions with other organisms, cells
or chemicals (Edelstein-Keshet (2005)). We ignore many of these processes in order to ex-
plore the assumption that aggregation is primarily the result of cell-cell interactions between
hepatocytes. Specifically, we seek to develop a model that, given an initial distribution of
cells similar to that constructed in vitro, produces spatial patterns similar to those observed
experimentally.

Agent-based models are often employed to simulate cellular mechanisms, as they reflect
the stochastic variability observed in experiments. They also enable analysis of the cell-level
and population level behaviour (Binder et al. (2006)), providing a simple and effective way
to formalise proposed theories of how a mechanism operates in computational terms. In
these models, space is represented as a uniform grid, time advances in discrete steps, and the
movement of an agent is dictated by a set of rules based on its previous location and that of
neighbouring agents. Compared to other methods, agent-based models are fast and simple to
implement, and provide instantaneous visual feedback that allow easy qualitative comparison
with experimental images (Ermentrout & Edelstein-Keshet (1993)). This analysis can be
extended quantitatively by collecting simulation data from the model using image analysis.

Two agent-based models were developed and implemented: one reflecting planar aggre-
gation, and the other reflecting the early stages of spheroid formation. Given that cellular
movement is often a combination of random motion and movement based on interaction with
other cells, we develop an agent-based aggregation rule encompassing both deterministic and
random components. Our model was able to produce a wide variety of aggregate patterns.
The spatial patterns of aggregates produced by the model were then analysed statistically
and compared with experimental images.

2 Agent-based Model Formulation

We now develop agent-based models to replicate the aggregation process of a closed popu-
lation of a single species of cells (hepatocytes) in vitro. Unlike biological processes such as
the slime mould dictyostelium discoideum (Edelstein-Keshet (2005)), in which a single large
aggregate is formed, we wish to be able to represent patterns with varying aggregate size
and number as seen in experimental images of spheroid aggregate formation (see Figure 1).
The most successful model developed, incorporated a combination of deterministic movement
based on the location of neighbouring agents, coupled with some random movement. The
deterministic component of our model was based on the assumption that aggregation occurs
due to cell-cell attraction. Specifically, a given hepatocyte cell scans its local environment
for other cells and moves in the direction of highest cell density.

The agent-based models are simulated on a square two-dimensional lattice, with a fixed



constant domain of width X in the x-direction and height Y in the y-direction. The domain
consists of sites within the lattice (X,Y ), whose positions are located at the discrete integer
points (x, y), for 1 ≤ x ≤ X and 1 ≤ y ≤ Y . Each of the sites is vacant or occupied by
a single square cellular agent. The initial lattice, at time t=0, is populated randomly with
a predetermined number cellular agents (fixed population size) N , which remains constant
throughout the simulation. This gives rise to a constant domain cell-density ρ = N

XY . For
simplicity, proliferation and death of cells are neglected, with only motility possible. The
assumption that cell proliferation does not occur is realistic as proliferation is limited in
experimental contexts where growth factors are not used (Riccalton-Banks et al. (2003)).
In addition, cells must remain within the specified domain, ensuring that the population is
closed. During a single time step t to t+ 1, the N cellular agents are selected independently
at random, one at a time, and given the opportunity to move. This is called the sequential
update method (Simpson et al. (2006)). The stochasticity of this, coupled with that of
the random population of the initial system, is thought to reflect the randomness and non-
uniformity of the biological process realistically. When a single cellular agent at (x, y) is
selected, it moves according to an aggregation rule. According this rule, a given cell will
attempt to migrate to a lattice site directly above, (x, y + 1), below, (x, y − 1), to the right,
(x + 1, y), or the left, (x − 1, y) (see Figure 2). If the site is vacant the move is successful,

(x,y)

Figure 2: Cell Motility: Possible moves

and the new site becomes occupied by the cell, leaving its previous site empty. If the new
site is already occupied by another cell, the move is aborted, with the cell retaining its initial
position. A cell may only move one lattice site at a time (or not at all), and may not exit
the domain.

2.1 Deterministic Component

The deterministic component consists of a majority rule based on density of neighbouring
agents, where a given cellular agent moves in the direction of highest density relative to that
agent. The density of neighbours is determined by searching in a number of 1D lines of lattice
sites called shells (see Figure 3). Given a cellular agent at (x, y), consider a collection of L
shells extending in the 4 primary directions; y+, y−, x+, x−. That is, each direction has one,
or more, shells associated with it. We call L the search radius of a cell. We want to find the



number of agents in each primary direction, given a specified search radius, and move in the
direction of highest count.

Given that an empty site is represented as a zero and a site occupied by a cellular agent
represented by 1 unit, we can define the indicator function representing occupancy:

M(x, y) =

{
0 if site (x, y) vacant,
1 if site (x, y) occupied by cellular agent.

If L = 1, we have only the first shell to consider. The first shell in the positive y direction
is comprised of lattice sites; (x− 1, y+ 1), (x, y+ 1) and (x+ 1, y+ 1). The first shells in the
y−, x+ and x− directions are defined similarly, as shown in Figure 3.

For each primary direction, we consider searching for agents in each of the lattice sites
comprising the L shells, and sum the contributions of agent density to obtain a directional
count. This will indicate which direction to move in.

Thus for L = 1, we obtain the counts:

y+count = M(x− 1, y + 1) +M(x, y + 1) +M(x+ 1, y + 1),

y−count = M(x− 1, y − 1) +M(x, y − 1) +M(x+ 1, y − 1),

x+count = M(x+ 1, y − 1) +M(x+ 1, y) +M(x+ 1, y + 1),

x−count = M(x− 1, y − 1) +M(x− 1, y) +M(x− 1, y + 1).

For L larger than 1, we consider the lth shell, for 1 ≤ l ≤ L.
The endpoints of the lth shell comprise two of the four diagonals off (x, y); (x + 1, y +

l), (x+1, y− l), (x−1, y+ l), (x−1, y− l), as well as the lattice sites between these endpoints.
The lth shell will comprise 2l + 1 lattice sites.

For example, for L = 2, the 1st (l=1) and 2nd (l=2) shells are searched (see Figure 3).
For L=2 the following counts are obtained:

y+count =
x+1∑

i=x−1
M(i, y + 1) +

i=x+2∑
i=x−2

M(i, y + 2),

y−count =

x+1∑
i=x−1

M(i, y − 1) +

i=x+2∑
i=x−2

M(i, y − 2),

x+count =

y+1∑
j=y−1

M(x+ 1, j) +

j=y+2∑
j=y−2

M(x+ 2, j),

x−count =

y+1∑
j=y−1

M(x− 1, j) +

j=y+2∑
j=y−2

M(x− 2, j).
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Figure 3: The search areas for the 4 primary directions, using the shell aggregation rule with
L = 2. Selected agent at (x, y) represented in grey, the white lattice sites are included in the
search.

An example of the cell movement calculation is given in Figure 4.
More generally, for an arbitrary search radius L, the following definitions are relevant:

Positive y shell count: y+count =
L∑
l=1

x+l∑
i=x−l

M(i, y + l), (1)

Negative y shell count: y−count =
L∑
l=1

x+l∑
i=x−l

M(i, y − l), (2)

Positive x shell count: x+count =
L∑
l=1

y+l∑
j=y−l

M(x+ l, j), (3)

Negative x shell count: x−count =

L∑
l=1

y+l∑
j=y−l

M(x− l, j). (4)

If the reach (search area) of any shell exceeds the domain of the lattice, only the sites



(x,y) (x,y)

(a) (b)

Figure 4: An example of the shell aggregation rule with L = 2: The selected agent (dark
grey) is located at (x, y), with the light grey sites representing other agents. Here y+count =
3, y−count = 2, x+count = 4, x−count = 2. Hence, in the absence of the random bias component,
the agent attempts to move in the positive x direction, and as this site is vacant, the move
is successful.

within the domain boundaries are included in the count.

2.2 Random bias component

Given the framework developed in the deterministic component, we now add a random bias
mechanism to complete the shell aggregation rule.

For a single application of the deterministic rule, for a chosen agent (x, y), let the total
count; Tcount = y+count + y−count + x+count + y−count.

Now consider the directional probabilities;

P (y+) =
y+count
Tcount

, P (y−) =
y−count
Tcount

, P (x+) =
x+count
Tcount

, P (x−) =
x−count
Tcount

.

The probabilities sum to 1, and a directional probability will be higher if the respective
directional count was larger. Let S1 = P (y+), S2 = P (y+) + P (x+), S3 = P (y+) + P (x+) +
P (y−). We can concatenate these into a probability interval between 0 and 1 (represented
visually below).

Clearly the widths of these subintervals are equal to the probabilities; 1 − S3 = P (x+),
S3 − S2 = P (y−), S2 − S1 = P (x+) and S1 − 0 = P (y+). Consider generating a random
number rand between 0 and 1. The biased random shell aggregation rule dictates that the
agent attempts to;



Move y+ if 0 ≤ rand ≤ S1
Move x+ if S1<rand ≤ S2
Move y− if S2<rand ≤ S3
Move x− if S3<rand ≤ 1

There is bias for movement to those directions with higher counts, but a level of random-
ness certainly remains.

3 Results

We now present simulations of the planar aggregation rule. We begin by illustrating our
results with images of typical realisations, and then determine a measure of how ‘aggregated’
a system of agents is. Finally, we investigate the relationship of parameters density, ρ, and
search radius, L, on the average area and number of aggregates formed.

A domain of size X = Y = 100 is populated randomly with N = 1000 agents, corre-
sponding to a density of ρ = 0.05. The low density is chosen for ease of viewing cellular
behaviour. The aggregation rule is then applied for a prescribed value of L for 1000 time
steps. Snapshots are taken at intervals throughout the simulation to show the morphogen-
esis of the system. The effect of changing L on spatial pattern formation is demonstrated
in Figures 5 & 6, with values of L = 10 and L = 30 respectively. The initial states of the
systems have clear areas of concentrated density, and in Figure 5 we see the agents grouping
in these areas to form aggregates. In Figure 6, the high value of L causes the agents to all
gravitate towards the centre to form one large aggregate.

It quickly became clear that varying search radius, L, and density, ρ, affects the spatial
patterns resulting from the application of the shell rule. Whilst the effect of density is more
subtle, in Figure 7 we see that increasing L decreases the number of aggregates, and thus
increases the size of the aggregates. The effect of both parameters is explored in more detail
in Section 3.1. Experimentally, hepatocytes aggregates do not form one large aggregate.
While there is much variation in the size of aggregates seen experimentally, those produced
by the aggregation rule with L = 20 are as large as we have observed. Values of L between
2 and 20 produce spatial patterns most realistic to our application and thus we restrict our
attention in analysis of the model to values within this range.

We now discuss how the time to achieve steady-state was determined. For a single cell,
an attempted move is aborted if the site it wants to move to according to the rule is occupied.
A high count of aborted moves indicates the cells have reached some quasi steady state.
Let A(t) represent the count of aborted moves of the collection of N cells at time t. To
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Figure 5: Typical realisation applying the shell aggregation rule on a randomly generated
cellular system, with search radius L=10, density fixed at ρ = 0.05. Snapshots taken at time
steps of interest. (a) t=0 (Initial State), (b) t=12, (c) t=30, (d) t=1000 (Steady State)

investigate the relationship between A(t) and t, we collect data from simulations. Fixing
density at ρ=0.1, we generate a random initial system of N agents. For this system, the shell
aggregation rule is applied to the population of agents for 300 f time steps. A(t) is recorded
at each time step. This process is repeated for 200 realisations and the results are averaged.
We present an average aborted count curves for different values of L, (Figure 8(a)), as well
as curves representing the standard deviation between samples (Figure 8(b)).

For the deterministic component we expect limt→∞A(t) = N , therefore, we expect that
eventually a steady state is reached where all moves aborted. Indeed, we hope that there
exists some tfinal where for all t ≥ tfinal, A(t) = N .

However, when the random bias component is incorporated into the aggregation rule,
we find that A(t) asymptotes at values slightly below N (see Figure 8(a)). This is reflected
in the standard deviation graph, as the curves never reach zero. This behaviour is not
unexpected, as while the majority of cells are located in aggregates and are unable to move,
there will always be a small number of cells that are either isolated or on the boundary of
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Figure 6: Typical realisation applying the shell aggregation rule on a randomly generated
cellular system, with search radius L=30, density fixed at ρ = 0.05. Snapshots taken at time
steps of interest. (a) t=0 (Initial State), (b) t=40, (c) t=100, (d) t=1000 (Final State)

aggregates. This minority will experience random motion due to the stochastic component
of our aggregation rule.

A dominant trend that emerges from the averages graph in Figure 8(a) is that A(t)
asymptotes faster with lower values of L, indicating that quasi steady states are achieved
faster. This is supported by the peaks in the standard deviation curves (Figure 8(b)), which
are higher, wider and take longer to peak for higher values of L. We conclude that by
t = 250 all systems for ρ = 0.1 have achieved a quasi steady state. Thus in future analysis,
we simulate up to t = 1000 to be confident of full aggregation.
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Figure 7: Comparison of (typical realisations) aggregate patterns when varying search radius
L, with density fixed at ρ = 0.1 (Rule applied to randomly generated initial systems for 1000
time steps). (a) L = 5, (b) L = 10, (c) L = 20, (d) L = 30
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Figure 8: Comparison of average and standard deviation of aborted move count with random
bias shell rule. X = Y = 100, sample size 200, (ie 200 randomly generated initial systems),
varying search radius L, density fixed at ρ = 0.1



3.1 Aggregate Number and Average Area

Satisfied that the randomly biased shell aggregation rule was producing spatial aggregate
patterns that accurately represented the biological process, and with a time of complete
aggregation quantified, we now move to quantify the size and number of aggregates produced.
As expected, these factors vary with density ρ and search radius L. We seek to investigate
this relationship quantitatively using image analysis and statistics.

Once a single simulation i had been completed, and an aggregate pattern realised, image
analysis was used to determine number of aggregates Ai and the size of each aggregate. The
size of the aggregates was averaged to produce an average size Si for simulation i.
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Figure 9: Relationship between length of search radius, L, and resultant (realised) aggregate
patterns; (a) Mean average area of aggregates vs length for ρ=0.2, ρ=0.1, ρ=0.05. Averaged
over 8 simulations per integer 2 ≤ L ≤ 30. Correlation Coefficients r: ρ=0.05, r=0.982,
ρ=0.1, r=0.981, ρ=0.2, r=0.983. (b) Average aggregate size vs length for ρ=0.2, ρ=0.1,
ρ=0.05. Averaged over 8 simulations per integer 2 ≤ L ≤ 20.

We sought to investigate the impact of both search length L and density ρ on values of



Ai and Si. The random component of the aggregation rule caused considerable variability
in the values of Ai and Si between realisations, even for fixed ρ and L, and due to this the
values needed to be averaged.

To do this, values of L, and ρ are fixed, and beginning from a random initial condition,
the aggregation rule applied until t = 1000. The process is repeated with the same L and
ρ, for a specified number (in this case 8) of random initial conditions and Ai and Si are
recorded for each. These values are then averaged to produce mean values of aggregate size
and average area of aggregates. This entire process is repeated for increasing values of L (see
Figure 9) and ρ (see Figure 10).

The simulation data obtained between search radius, L, on average area of aggregates
Ā was found to have a linear relationship. By performing linear regression on the data in
Figure (a), it is clear to see that higher densities give larger average aggregate size and larger
slopes.

In Figure 9(b), we see that the count number of aggregates, S̄, decays quickly as search
radius L increases. The difference in S̄, for different agent densities is only pronounced for
small values of L. We see that higher values of ρ contribute to a smaller number of aggregates
for 2 ≤ L ≤ 10. Although for L = 2, the value of S̄ is larger for ρ = 0.1 than ρ = 0.05,
perhaps indicating that larger sample sizes were needed for more consistency.

The data obtained between density of agents, ρ, on Ā and S̄ was found to have a linear
relationship. The data and respective curve fit are displayed graphically for L = 5, L =
10, L = 20 in Figure 10.
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Figure 10: Relationship between density of agents, ρ, on resultant (realised) aggregate pat-
terns. Data and linear regression fits are represented. Data displayed was averaged over 8
simulations per 0.01 increment 0.05 ≤ ρ ≤ 0.2. Correlation coefficients r, L = 5, r = 0.993,
L = 10, r = 0.985, L = 20, r = 0.976. (a) Mean average area of aggregates vs length for L=2,
L=5 and L=10. (b) Average aggregate size vs length for L=2, L=5 and L=10. Correlation
coefficients r, L = 5, r = 0.967, L = 10, r = 0.899, L = 20, r = 0.164.



We see in Figure 10(a) that the initial (ρ = 0.05) value of Ā increases with L. The slope
of the linear fits is also found to increase with L.

In Figure 10(b), we see that the initial (ρ = 0.05) value of Ā decreases with increases in
L. The slope of the linear fits also appears to decrease with increases in L, confirmed with
high correlation in the cases of L = 5 and L = 10. However, in the case of L = 20 a linear fit
is found not to be appropriate, with a correlation coefficient of only r = 0.1640. Inspection
of the data showed that S̄ for each ρ was strongly centred about the value 4, with little to no
variation initially, and a trend of increasing variation for larger values of ρ. Since 4 is a small
number, a variation of 1 is significant, and so while the data is nearly flat here the minimum
variation of ±25% causes the poor correlation coefficient.

4 Stacking Rule

While more conventional mono-layer culturing techniques, producing two-dimensional aggre-
gate patterns as modelled above, have been used in the past in generating tissue in vitro,
recently there has been an emergence of three-dimensional culture techniques. In such envi-
ronments, hepatocyte cells ultimately form free-floating spheroids. The morphogenesis from
randomly dispersed cells on the surface of 2D dish to a fully formed 3D spheroid floating in
solution occurs via a number of stages. Initially the cells form planar aggregates (Figure 11
(A)), then the cells stack to form a circular pyramid, and finally cells are able to detach from
the surface, forming a spheroid which eventually becomes entirely free-floating (Figure 11 (C)
& (D)). Hepatocyte spheroids have been found to have enhanced functionality and viability
compared with planar aggregates formed in two-dimensional environments (Thomas et al.
(2005)). In vivo hepatocytes are found to organise into a three-dimensional structure. Thus
it is thought that the two-dimensional environments fail to accurately mimic the natural
microenvironment and may impede normal regulatory processes, and that three-dimensional
culturing is more suitable for the growth of the structures of hepatocytes found organically
(Riccalton-Banks et al. (2003)). For these reasons, we seek to extend the planar model to
replicate the early stages of spheroid formation.

4.1 Implementation

We now consider a modification of our aggregation rule which allows cell-stacking. Whereas
previously, if the shell rule dictated that an agent sought to move in a direction which
was occupied by another agent, the move was aborted, now the motile agent is given an
opportunity to stack on top of the occupying agent. This is possible subject to certain
constraints, which are increasingly restrictive with respect to the height of the stacks. If the
new site is (x, y), then if M(x, y) = 1, the chosen agent stacks on the site (i.e M(x, y) = 2)
only if all sites within a 3 site radius (i.e 3 squares of lattice sites) are occupied. Similarly,
if M(x, y) = 2, then M(x, y) can only become 3 only if all sites within a 4 site radius are



Figure 11: Morphology of spheroid aggregation (from Riccalton-Banks (2002)); (A) Cell
clusters form on the surface of the substrate. (B) Clusters begin to contract (arrows indicate
direction of contraction). (C) Cell contact with the surface decreases at the centre of the
aggregate and a three-dimensional structure is formed. (D) The spheroid detaches from the
surface.

occupied. The process continues for all values of M(x, y). This gives a realistic limitation
on how high cells can stack, and limits this height respective to the area of the 2D aggregate
formed in the first stage of the spheroid formation.

Given this implementation, if M(x, y) = n > 1, this represents n agents stacked on top of
each other vertically. Thus now when we search for agents to be made motile with aggregation
rules, we seek (x, y) such that M(x, y) 6= 0. If this is the case, we are only considering that
the highest agent on a stack is able to move. So, for example, if M(xcurrent, ycurrent) = 2 and
M(xnew, ynew) = 3, it is possible given the right conditions that the top cell in the current
site could move atop the highest agent on this stack (i.e height 3). In this case, we would
be left with M(xcurrent, ycurrent) = 1 and M(xnew, ynew) = 4. Thus, unlike when stacking is
not allowed, where at each time step constant N agents are selected to made motile, now N



is decreased when stacking has occurred. As the agents stack, and N decreases, we are in
a sense losing 2D area when looking down on the experimental and simulated images of the
cells. Thus we will now refer to the number of agents available for selection as the planar area,
a time dependent variable N(t). As more agents stack on one another, over time, the number
of agents selected for potential motility, N(t), analogous to the planar area, will decrease. As
a result, in the aborted moves vs. time plot for the second stage of spheroid formation, we
expect to see the count number of aborted moves decreasing over time. Thus, for a measure
of steady state, we seek only that the graph asymptotes at some time. In Figures 12 & 13, (a)
to (d) show typical realisations of the stacking rule applied to a randomly populated system
of agents with density ρ=0.1, and (e) shows the Aborted Moves count A(t), coupled with the
Area of cells, N(t). We see in (e) that N(t) increases to a peak, around time t = 400. This
behaviour before the peak is similar to that observed in the the shell aggregation aborted
moves plots, and although the time to peak is not identical, it is close. N(t) stays constant at
N(t) = 1000, indicating that no stacking is occurring. Both these trends indicate that planar
aggregation has been achieved. Thereafter, N(t) decreases with time to an asymptote, in
relative synchronisation with the A(t) curve. We see a slightly higher peak in Figure 12 than
that of Figure 11, with much higher asymptote in both planar area and aborted moves count.
This is reflected by the typical realisations, where we see lower stacking heights in Figure 12
(d) than that of Figure 13 (d). This is expected because for L = 10, the stacking process is
restricted due to the small size of planar aggregates produced, versus that of L = 30 where
the large central planar aggregate allows for a large amount of stacking.
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Figure 12: (a)-(d); Snapshots of morphology hepatocyte agents using stacking rule with
parameters L=30, ρ = 0.1, X = Y = 100. (a)t = 0, (b) t = 100, (c) t = 500, (d) t = 6000.
(e) Aborted moves A(t) and planar area N(t) vs time.
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Figure 13: (a)-(d); Snapshots of morphology hepatocyte agents using stacking rule with
parameters L=10, ρ = 0.1, X = Y = 100. (a) t = 0, (b) t = 100, (c) t = 500, (d) t = 6000.
(e) Aborted moves A(t) and planar area N(t) vs time.



5 A First Step in Calibration - Comparison With Experimen-
tal Images

In order to get our planar aggregation and stacking models to best replicate the biological
phenomena of hepatocyte aggregation, we need various data to inform how we calibrate the
parameters in these models. The following spatial analysis of experimental images is a first
step in collecting such data. In reality, more data and possibly more inferences would be
needed to accurately inform the calibration. Thus, the methods presented are intended to
provide a framework and suggested methodology for obtaining relevant data for extensions on
the research in this report. Experimental images of hepatocyte cells co-cultured with stellate
cells (other liver cells), provided by The University of Nottingham (RJ. Thomas et al. (2006))
were considered for spatial analysis. The images are taken from a larger domain, with cells
moving in and out of the frame. Thus we make the assumption that the net number of cells
moving out of the frame is equal to those coming in. Given that our models were based
around the movements of a single species of hepatocyte cells, the two-species interactions
leading to the aggregation in the experimental images are not represented. As such, whilst
the general structure of the aggregated system of cells are similar, we also observe differences
between the experimental images and simulated realisations of our model. However, given
that hepatocytes are the predominant type of liver cell, the first step in modelling hepatocyte
aggregation in the presence of stellate cells was to model and analyse results in absence of
stellate cells. A natural extension of this report would be to incorporate stellate cells, and
their contribution to the aggregation process. We make use of these images by ignoring the
presence of stellate cells.

Firstly, by considering a single image of an aggregated system of hepatocytes in vitro, we
seek to find an average aggregate size for this image. Figure 14 shows processed images of an
experimental aggregate pattern, separating the individual cells from the aggregates. From
these images we found that the average aggregate in this experiment consists of approximately
21.41 cells, implying an average aggregate radius of 2.61 cell diameters (assuming circular
aggregates). Note that loss of area is not factored into these findings. Using our previous
analysis of the planar aggregation model, a value of L could be selected to best match the
average size of the aggregates. However, the pronounced variation in aggregate size in the
experimental images is not reflected in the model.

In order to calibrate our stacking rule, we seek to quantify a realistic amount of agent-
stacking. This can be done by comparing the planar area of the initial and final states of
experimental images. Using image processing and analysis on such images, we can find the
amount of planar area lost in the aggregation process. This difference in area accounts for
how many cells have undergone stacking and thus are ‘lost’ to the 2D image. Figure 15
shows original and processed images of initial and final states of hepatocyte aggregation in
co-culture with stellate cells. We found an initial density of 253.65 cells and a ‘loss’ of 89.29
cells between images, indicating that approximately 35% of the cells have stacked upon other



(a) Original Final Image (b) Processed original image

(c) Aggregates extracted (d) Single cells extracted

Figure 14: Image processing is used on an experimental image to isolate individual hepatocyte
cells from aggregates in order to estimate their respective area. (a) shows the original image
of the final state of the experiment, and (b) is the black and white image produced by image
processing. The aggregates and individual cells are then separated into separate images in
order to estimate their average area; (c) and (d) respectively.

cells.
It is inherently difficult to cross-compare images between different research groups due to

vastly different culturing techniques used. As a result, it is difficult to collect data on a large
number of controlled samples. Hence it would be desirable to develop inferential methods on
one existing suite of data, or have a much larger suite of data collected experimentally.

6 Discussion

By modelling the aggregation process of single species of cells, with motility based on a
combination of cell-cell attraction and random movement, we were able to replicate a wide
variety of cell aggregate patterns. We were able to quantify the effect of varying search radius



(a) Initial Image (b) Black and White Image Produced Using
Image Processing

(c) Final Image (d) Black and White Image Produced Using
Image Processing

Figure 15: Using image processing, we calculate the total area of hepatocytes in two exper-
imental images in order to estimate the number of cells stacking on one another. (a) and
(b) represent the initial state of the cells before and after image processing, and (c) and (d)
represent that of the final state.

and density on the spatial structure of the planar aggregate patterns. The mean average area
of aggregates was found to increase linearly with both search radius and density. The count
number of aggregates was found to decrease with increases in density and search radius,
linearly in the case of the former. We then introduced the first step in a 3D spheroid model;
stacking of cells to form a circular pyramid structure. Finally, we developed a proof of concept
method for calibration of the models.

Unsurprisingly, the single species model does not match the two species experimental
images of aggregation exactly. However, the basic structural elements of the images can be
replicated, in particular the potential for the model to be calibrated to produce aggregate
patterns of a similar average size to those observed experimentally. This gives us confidence
to discuss certain results produced by the model in relation to the underlying biology.



The simulation results make clear the intuitive finding that longer ranges of interactions
between cells result in aggregates large in size and few in numbers. This suggests that hepato-
cyte aggregation is predominantly the result of the cells sensing their immediate environment,
as opposed to long range chemical interactions. It is possible that certain environmental fac-
tors and culturing techniques change the nature of cell-cell interactions between hepatocytes,
effectively changing the search radius. This would explain the variety, particularly size and
number, in the aggregate patterns found experimentally between research groups.

While hepatocytes predominate, other cell populations are often integrated in culture.
One promising technique to enhance viability and functionality of the tissue is, the introduc-
tion of stellate cells to the culture. When co-cultured in three dimensions, hepatocytes and
stellates rapidly form heterospheroids. This speed is important for viability, and the resul-
tant heterospheroids have been shown to substantially increase in functionality and viability
(Abu-Absi (2004)).

With three-dimensional co-culture dominating the field, the ultimate goal for this report
was to contribute to the first stages of an accurate agent-based model of three-dimensional
spheroid formation of hepatocyte and stellate cells.
Three important extensions that may be considered together or in parallel would be:

• Collecting or locating more experimental data on co-cultured stellate-hepatocyte ag-
gregation using the image processing as outlined above, and/or considering inference
on this data in order to inform the calibration of the aggregation models.

• Integrating stellate cells into the current aggregation model(s), and presenting simula-
tions and analysis of a two species model.

• Extending the 3D spheroid model by continuing the spheroid-aggregation process past
the circular pyramid stacking structure. Subsequent stages involve individual cells
lifting from the surface, and the group of cells forming a sphere which will eventually
lift off the surface entirely. This would involve incorporating cell-surface adhesion
strength, and the strength of adhesion compared with cell-cell interactions.

Aggregation is an ubiquitous phenomenon, and as such while the models developed in this
report do not yet reflect the complex detail of the intended application, they have the poten-
tial to be used in other contexts. Examples may include cell-organ projects in developmental
biology, or the study of swarming and social aggregation of animals in ecology.
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