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Figure 1: Ring system arrangements for (a) three elements with a frustration between
elements 1 and 3, and (b) four elements with no frustrations.

1 Introduction

1.1 Background

Uni–directionally coupled bistable ring systems have been shown to undergo bifurcations
resulting in oscillations when the control parameter, in this case the coupling strength
K between the elements, is raised to a sufficiently high value. This non–linear response
has triggered investigations into the possible use of these simple systems as affordable
signal detectors due to their high sensitivity to external signals [4].

This has been studied in detail with ring systems of three bistable elements and in
most of these ring systems that have been investigated, the coupling between elements
was positive. Under these conditions, each element prefers to be in the opposing state
to the element it is coupled with. Calling these states positive and negative, it can be
seen that this preference can be satisfied when there are an even number of elements
in the ring, for example with a four element system, they can be arranged as in Figure
1(b) and hence the system is stable. However, with an odd number of elements, a
’frustration’ exists where two consecutive elements are in the same state, see Figure 1(a).
These systems with frustrations can then begin to oscillate as the coupling strength is
increased.

If instead, there is a mix of negatively coupled and positively coupled elements in
the ring, those with negative coupling prefer to be in the same state whilst those with
positive coupling prefer to be in the opposite state. As two different frustration types
now exist, a frustration can occur in a ring system with an even number of elements. I
will be investigating the dynamics of the most basic example of this group of systems,
focusing on the ring system with two elements coupled together as in Figure 2. Here,
element 1 prefers to be in the opposite state to element 2 whilst element 2 prefers the
same state. Hence a frustration occurs and the system can exhibit auto-oscillations.

As the elements themselves are no different to those studied in previous research, I
will model their bistability using the same quartic potential (1) and differential equation
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Figure 2: Two element frustrated ring system.

-2 -1 1 2

0.5

1.0

1.5

2.0

Figure 3: The quartic potential.

(2) as in [2]. As seen in Figure 3, the potential is symmetrical with each well being of
the same depth.

U (xi) = −1

2
(xi)

2 +
1

4
(xi)

4 (1)

dxi
dt

= ẋi = f (xi) = −∇U (2)

However, as the coupling is different (negative) for element 2, the coupling term in the
differential equation’s modelling the system must be modified. For positive coupling, the
term K (x1 − x2) concerns the difference between the elements’ states, so the negative
coupling will be modelled by replacing the difference with the sum K (x1 + x2). This
gives the differential equations:

ẋ1 = x1 − (x1)
3 +K (x1 − x2)

ẋ2 = x2 − (x2)
3 +K (x1 + x2) (3)
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1.2 Areas of Focus

Before the response of this two element system to external signals can be assessed, the
dynamics of the unforced differential equation system (3) must first be investigated, for
comparison. In doing so, the fixed points of the system will be located and studied,
and the bifurcation taking place, the critical coupling strength Kc and the relationship
between the frequency of the oscillations and the coupling strength will be determined.

Following this, a small positive constant signal will be added, in two configurations,
to see how the system’s behaviour is affected, focusing on the same aspects of fixed
points, bifurcations and oscillation frequency. Comparisons will then be made between
the different systems and their behaviour.

In practice, noise will inevitably be present and as a result, the system must also
be analysed in response to random noise. The noise will be added to the model in
one configuration; matching, and numerical simulations will be carried out to view the
behavioural changes.
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2 Dynamics of the unforced system

In order to get a general idea of the behaviour of the system, numerical simulations have
first been carried out with the use of MATLAB and Mathematica packages. Following
this, the system will be analytically examined to locate the fixed points, analyse how
they move with K and determine the bifurcation point.

2.1 Numerical simulation and fixed point analysis

To understand how the elements make their changes from each state once the oscillations
have begun, the critical K at which the auto-oscillations begin to take place must be
approximately located. To do this, I have chosen to analyse the fixed points and their
stabilities.

A fixed point of a system is the point x ∗ at which all the ẋ in the system are equal to
zero [5]. Applying the linearisation or Hartman-Grobman theorem, linearising the vector
field ẋ about the fixed point by evaluating the Jacobian at that point and determining its
eigenvalues and eigenvectors allows us to determine its stability [5]. When the eigenvalues
have positive real part, the fixed point is unstable along the corresponding eigenvectors,
and when they have negative real part, the fixed point is stable along the eigenvectors
[5].

For the two-element ring system (3), out of a total of 9 fixed points, there is only
one easily expressible solution at (0,0). The other 8 are extremely complicated and will
not be explicitly defined. The Jacobian for this system is

Df =

(
1 +K − 3 (x1)

2 −K
K 1 +K − 3 (x2)

2

)
, (4)

Evaluating at (0,0) gives

Df(0, 0) =

(
1 +K −K
K 1 +K

)
, (5)

leading to eigenvalues λ ∈ {(1 +K)− iK, (1 +K) + iK}. As K > 0, these both have
positive real part, hence the (0,0) fixed point is unstable and the two corresponding
eigenvectors span an unstable 2D manifold.

Returning to the remaining fixed points, these can be found by treating the right
hand sides of the differential equations (3) as simultaneous equations and equating each
to zero (6). Solutions to x1 and x2 are then given by the use of Mathematica’s solve
facility.

x1 − (x1)
3 +K (x1 − x2) = 0

x2 − (x2)
3 +K (x1 + x2) = 0 (6)

Using Mathematica’s manipulate command, I was able to plot these solutions and
view how they moved as K was varied. This is shown in Figure 4, for various values of
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K, and appears to suggest a critical coupling strength of Kc ' 0.547. From the graphs,
the fixed points appear to collide in pairs and disappear. This implies that saddle-node
bifurcations have occurred [1].

Using this estimate of the critical coupling strength, MATLAB can be used to per-
form a numerical simulation of the behaviour of the elements shortly after the oscillations
have begun. This results in the graph, Figure 5, which shows how element 1 switches
states to try stay in the opposite state to element 2 whilst element 2 switches states
to try stay in the same state as element 1. Performing the same simulation but with a
subcritical value of K results in Figure 6 in which each element stays in a stable state.
This stable state will depend on the initial conditions and in Figure 6, element 1 began
in the positive state and element 2 the negative state.

Also included in Figures 5 and 6 is the sum of both signals for comparison with
previous research; in this case, the summed response has the same period as each element
whereas in the three element case, the summed response had a period one third that of
each element.

Now to determine the critical value analytically, as the oscillations begin once the
bifurcation point has been reached, I simply need to calculate the critical K at which at
least one of the eigenvalues of each of the eight fixed points equals zero [1]. This results
in a confirmation of the numerical approximation with Kc ' 0.546918, also reciprocated
in numerical simulations in MATLAB. Unfortunately, no exact solution is possible due
to the complexity of the eigenvalues.

2.2 Relationship between ν and K

In order to determine how the frequency of the oscillations and the coupling strength
are related, I make use of the decoupling method devised by V. In et al. [4].

From Figure 5, it can be seen that while one element is switching states, the other
is mostly stationary, and can hence be approximated as staying in the same state. This
property is crucial for the decoupling method and is present in the system for K values
close to the critical point. Therefore, this analytical method can be used for small
perturbations of K.

Supposing element 1 to be the element transitioning from positive to negative, in
which case element 2 is initially in its positive state, decoupling the system results in
the following

f (x1) = ẋ1 = (1 +K)x1 − (x1)
3 −Kx2m (7)

where x2m is the value of x2 in its positive state.
Now that x1 is decoupled from x2, its behaviour can be expressed with a potential

function (8)

Um (x1) = −1

2
(1 +K) (x1)

2 +
1

4
(x1)

4 +Kx2mx1 (8)

At the critical coupling, this potential loses its bistability at which point U ′m (x1) =
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Figure 4: The fixed points in phasespace for the unforced system at (a) K = 0.0001, (b)
K = 0.2, (c) K = 0.4, d) K = 0.5395 and (e) Kc = 0.5469.
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Figure 5: The oscillations of the unforced system at K =0.55.
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Figure 6: One of the steady states of the unforced system at K =0.5.
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U ′′m (x1) = 0 where ′ denotes the derivative with respect to x1.

U ′′m (x1) = −(1 +K) + 3 (x1)
2 = 0

⇒ x1c =

√
1 +Kc

3
(9)

x1 > 0 as it is in the positive state. Substitution into U ′m (x1) = 0 yields

Kcx2m =
2

3

(1 +Kc)
3
2

√
3

(10)

Then, as element 2 is constant in its positive state, ẋ2 = 0 and substituting x1 =
√

1+Kc
3

gives for x2m > 0

x2m =

(
2
3

) 1
3 (1 +K)(

3
√

3K
√

1 +K +
√

3
√
−4− 12K − 3K2 + 5K3

) 1
3

+

(
3
√

3K
√

1 +K +
√

3
√
−4− 12K − 3K2 + 5K3

) 1
3

2
1
3 3

2
3

(11)

Using these solutions, equation (7) can be integrated from point A to point B (x1 = 0)
in Figure 5 giving the time required for the elements to switch state; this gives a quarter
of the period of the summed signal assuming that the time needed to move from the
”zero” state to the negative state is negligible and using the symmetry of the system.

t =

∫ 0

x+m

1

f (x1)
dx1 = −

∫ x+m

0

1

f (x1)
dx1

where x+m is the positive steady state for x1. Noting that x10 =
√

1+K
3 is the point

where the integrand − 1
f(x1)

is maximised, taking a Taylor expansion of f(x1) about x10
and using algebraic tricks obtained from V. In et al. [4] gives

t '
∫ ∞
−∞

1

f (x10) + f ′′(x10)x2

2

dx

t '
√

2π√
f (x10) f ′′ (x10)

(12)

From symmetry, the period of the summed signal is 4t giving the frequency,

ν =
1

4t
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Figure 7: The frequency of the oscillations for the unforced model against the coupling
strength, both numerical simulations and analytical approximations.

ν '

(√(
k

(
−6k + 2k3 − 3K

(
2k − 2

4
3 k2

(3kK+s)
1
3
− 2

2
3 (3kK + s)

1
3

))))
4
√

6π
(13)

where k =
√

1 +K

s =
√

(−2 +K)(1 +K)(2 + 5K)

For small perturbations of K from Kc, expanding (14) about Kc = 0.5469 gives

ν '
√

2.025K − 1.106

4π

Numerical simulation via MATLAB gives the relationship between the coupling strength
and the oscillation frequency shown in Figure 7 with a comparison to the analytical
relationship. It can be seen that the analytics give a close approximation only for values
of K close to Kc as the assumptions made in the calculations are only valid close to this
critical value.
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3 Dynamics of the system in response to a constant input

A logical place to begin when observing the changes of the system in the presence of an
input signal is with a small constant signal, ε > 0. This can be added to the system
in different ways and I will be investigating two such ways. The first I will call the
‘alternating‘ configuration and the second the ‘matching‘ configuration. The reason for
these two configurations being of interest is the differing coupling setup in comparison
with previous research [2, 4]. The two-element system has not been studied before
and it is possible that with the negative coupling, the input could be modelled in two
different ways, hence for completeness, both configurations must be studied. Note for
all numerical simulations, ε = 0.01, unless otherwise stated.

3.1 The alternating system

For the alternating configuration, the new differential equations modelling the system
are as follows

ẋ1 = x1 − (x1)
3 +K (x1 − x2) + ε

ẋ2 = x2 − (x2)
3 +K (x1 + x2)− ε (14)

where for element 2, the input is modeled with ”-ε”. These differential equations yield
the new potentials (15) and (16) which, as shown in Figures 8 and 9, are no longer
symmetric and instead are biased respectively towards the positive and negative wells.

U (x1) = −1

2
(x1)

2 +
1

4
(x1)

4 − εx1 (15)

U (x2) = −1

2
(x2)

2 +
1

4
(x2)

4 + εx2 (16)

This bias indicates that the positive state is favoured over the negative state for x1
and vice versa for x2. To analyse the new dynamics of this system, I will use similar
techniques as in the unforced case.

3.2 Numerical simulation and fixed point analysis (alternating system)

The previous method of obtaining an estimate of the critical coupling through the numer-
ical analysis of the fixed points using Mathematica to solve the simultaneous equations
(17) unfortunately produces very complex solutions which cannot be reliably plotted.

x1 − (x1)
3 +K (x1 − x2) + 0.01 = 0

x2 − (x2)
3 +K (x1 + x2)− 0.01 = 0 (17)

I have roughly approximated the critical K values instead by viewing a 3D graph in
Mathematica of the differential equations with the Manipulate function to see how the
intersection between the surfaces and the zero-plane changes with K. From the estimated
critical K’s obtained, I was able to produce several fixed points plots, see Figure 10, by
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Figure 8: The bistable potential for x1 with ε = 0.1. This value of ε was chosen to
emphasize the bias towards the positive well.
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Figure 9: The bistable potential for x2 with ε = 0.1 showing the bias towards the negative
well.

13



solving (17) numerically around those approximations, and as can be seen, there is more
than one critical K value. This can be expected as the potentials are no longer symmetric
and hence, it will be easier, i.e. a lower K is required, to ‘destroy‘ certain pairs of fixed
points before the others. In the case of x1, as the positive state is favoured, fixed points
with negative x1 are expected to be destroyed first and the opposite is true for x2. Also
taken into account is the preference of x1 to be in the opposite state to x2 and the initial
conditions of the system. The dynamics of the system can be seen in Figure 11. Again
as the fixed points disappear in pairs, saddle node bifurcations are taking place.

Performing a numerical simulation in MATLAB results in the approximate critical
K value of 0.55903. Note that this value is larger than the critical K of the unforced
system. As the oscillations can only begin once all the stable states have disappeared,
the value of K required must be larger than that required to exit the state to which the
system is biased, for example for element 1, the K must exceed the value to eliminate
the positive well in the bistability destruction.

3.3 Relationship between ν and K (alternating system)

The decoupling method can again be applied to determine the frequency-coupling rela-
tionship even with the addition of the constant input as demonstrated in [4]. As will be
shown later, the only change required is in the final integration for calculating the period
of the oscillations. As the constant signal removes the symmetry of the bistable poten-
tial, and hence the system dynamics, the transition from positive to negative actually
takes longer than from negative to positive for element 1 and vice-versa for element 2.
Hence two different integrals must be evaluated to determine the period. The decoupled
differential equation and corresponding potential for x1 during transition is as follows
where x2m is again the value of x2 in the positive state.

f (x1) = ẋ1 = (1 +K)x1 − (x1)
3 −Kx2m + ε

Um (x1) = −1

2
(1 +K) (x1)

2 +
1

4
(x1)

4 +Kx2mx1 − εx1

Again the critical coupling occurs when the potential loses its bistability (U ′m (x1) = 0
and U ′′m (x1) = 0) giving

x1c = ±
√

1 +Kc

3

Kcx2mc =
2

3

(1 +Kc)
3
2

√
3

+ ε (18)

Now under the approximation that ε is small, following the procedure outlined in
V. In et al. [4] for a small constant signal, to calculate x2m and Kc, the following is
assumed

Kc = Kc0 + δ1

x2m = x2m0 + δ2 (19)
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Figure 10: The fixed points in phasespace for the alternating system at (a) K = 0.53,
(b) K = 0.54 and (c) K = 0.56.
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Figure 11: The oscillations of the alternating system at K=0.57. Note the different
speeds of transition.

where Kc0 and x2m0 are the values of Kc and x2m from the unforced case and the δ′s
are small.

Again during the transitioning of element 1, element 2 is approximately stationary
giving

ẋ2 = f (x2m) = 0 = (1 +K)x2m − (x2m)3 +Kx1 − ε

= (1 +K)x2m − (x2m)3 +K

√
1 +K

3
− ε (20)

where x1 =
√

1+K
3 was substituted from (18). Substituting (19) into (20) and taking δ2

to first order yields

δ2 = − ε

1 +K

⇒ x2m = x2m0 −
ε

1 +K
(21)

Similarly, for the transition of element 1 from the negative state to the positive,

x101 = −
√

1 +K

3

δ22 =
ε

1 +K

⇒ x2m2 = x2m02 +
ε

1 +K
(22)

where x2m02 = −x2m0.
In order to determine δ1, the first of (19) must be substituted into the second of

(21) and both then substituted into 18 before taking δ1 to first order. However, as the
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formulas obtained for x2m0 and Kc were so complicated, no easily expressible solution
was found.

Now to calculate the period, as noted before, inclusion of the offset destroys the
symmetry of the system causing certain transitions to take shorter times for completion.
However, it will be assumed that each element has the same period which is also the
period of the summed response. Thus, two integrations must be done; one for the
transition of element 1 from the positive to negative state (from point A to point B in
Figure 11) and the other from the negative to positive state (point C to point D). For
the positive to negative transition, using the same method as in the unforced case,

t1 '
∫ ∞
−∞

1

f (x10) + f ′′(x10)x2

2

dx

'
√

2π√
f (x10) f ′′ (x10)

(23)

where x10 =
√

1+K
3 and substituting x2m from previous calculation. And for the negative

to positive transition,

t2 '
∫ ∞
−∞

1

f (x101) + f ′′(x101)x2

2

dx

'
√

2π√
f (x101) f ′′ (x101)

(24)

where x101 = −
√

1+K
3 and x2m2 = x2m in the formula for f .

This gives a total period of t = 2 (t1 + t2), assuming the time from point A to B
equals the time from D to A (of the next oscillation cycle) and the time from B to C
equals that from C to D, resulting in a frequency of

ν =
1

t
=

1

2t1 + 2t2

Numerical simulations in MATLAB yields the relationship between the frequency of
oscillation and the coupling strength, as shown in Figure 12.

3.4 The matching system

In this configuration, the constant input is modelled with ”+ε” for both elements yielding
equations

ẋ1 = x1 − (x1)
3 +K (x1 − x2) + ε

ẋ2 = x2 − (x2)
3 +K (x1 + x2) + ε (25)

They now share the same potential (15) and hence the same bias shown previously in
Figure 8.
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Figure 12: The frequency of the oscillations for the alternating model against the cou-
pling strength.

3.5 Numerical simulation and fixed point analysis (matching system)

Using the same procedure as in the alternating case, solutions of the simultaneous equa-
tions (26) are plotted, see Figure 13, for various K values obtained from viewing the 3D
graph.

x1 − (x1)
3 +K (x1 − x2) + 0.01 = 0

x2 − (x2)
3 +K (x1 + x2) + 0.01 = 0 (26)

In this case, both elements favour the positive state leading to the preferred earlier
destruction of the negative states. Again, the preference of element 1 to be in the
opposite state and the initial conditions affect the order of disappearance and their
disappearance in pairs signifies saddle node bifurcations. Figure 14 shows the behaviour
of the system at K=0.57. Notice how both elements take a longer time to transition from
the positive state to the negative state but spend different amounts of time in each state.
Each element must balance between the bias towards the positive state and the preferred
state as a result of the coupling. Performing a numerical simulation in MATLAB results
in the approximate critical K value of 0.55607; larger than the unforced critical K for
the same reasons as in the alternating case.

3.6 Relationship between ν and K (matching system)

Once again using the decoupling method from V. In et al. [4], as in the alternating
configuration, the integration must be completed in two sections. From Figure 14, it
will be assumed from symmetry that the time from point A to B equals that of B
to C and the time from C to D equals that of D to A (of the next oscillation cycle).
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Figure 13: The fixed points in phasespace for the matching system at (a) K = 0.53, (b)
K = 0.54 and (c) K = 0.56.
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Figure 14: The oscillations of the matching system at K=0.57. Note the different speeds
of transition.

Both elements and the summed response again have the same period. As before, during
the transitioning of element 1, element 2 is approximately stationary allowing for the
decoupling of element 1 from element 2 giving

f (x1) = ẋ1 = (1 +K)x1 − (x1)
3 −Kx2m + ε

Um (x1) = −1

2
(1 +K) (x1)

2 +
1

4
(x1)

4 +Kx2mx1 − εx1

Again the critical coupling occurs when the potential loses its bistability giving

x1c = ±
√

1 +Kc

3

Kcx2mc =
2

3

(1 +Kc)
3
2

√
3

+ ε (27)

as before. Substitution into ẋ2 gives

ẋ2 = f (x2m) = 0 = (1 +K)x2m − (x2m)3 +Kx1 + ε

= (1 +K)x2m − (x2m)3 +K

√
1 +K

3
+ ε (28)

Again assuming the following,

Kc = Kc0 + δ1

x2m = x2m0 + δ2 (29)

where Kc0 and x2m0 are the values of Kc and x2m from the unforced case and the δ′s
are small. Performing the same calculations as before leads to the solution of δ2

δ2 =
ε

1 +K
(30)
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Figure 15: The frequency of the oscillations for the matching model against the coupling
strength.

for both transitions from positive to negative and back again.
Again, no simple analytical solution for δ1 is possible so a formula relating the fre-

quency of oscillation and coupling is not explicitly expressible. The frequency however,
would be calculated in the same manner as before. Numerical simulations in MAT-
LAB give the relationship between coupling strength and oscillation frequency shown in
Figure 15.
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4 Dynamics of the system in response to noise

Another logical situation to be studied is the addition of noise to the model. Following
the procedure used in the inclusion of a constant signal to the system, the noise will be
added, with the use of a Wiener process [3]. The noise studied is Gaussian white noise
with stochastic term dW =

√
2Dξi(t)

√
∆t, where D is the variance of the noise and ξ is

a Gaussian random variable with mean 0 and standard deviation 1.

4.1 Behaviour of the matching noise system

In the matching configuration, the stochastic differential equations are as follows,

ẋ1 = x1 − (x1)
3 +K (x1 − x2) +

√
2Dξ1(t)

ẋ2 = x2 − (x2)
3 +K (x1 + x2) +

√
2Dξ2(t) (31)

which will be investigated numerically using the Euler forward integration method. With
this method however, the stochastic component of the differential equations, i.e. the
noise, is instead scaled with the square root of the time step [3] giving

x1 (t+ ∆t) = x1(t) + ∆t
(
x1(t)− (x1(t))

3 +K (x1(t)− x2(t))
)

+ dW1

x2 (t+ ∆t) = x2(t) + ∆t
(
x2(t)− (x2(t))

3 +K (x2(t) + x1(t))
)

+ dW2 (32)

MATLAB simulations yield a critical coupling strength of Kc ' 0.542. This will however
not always be the case as the noise strength is random, however providing the noise stays
about the same order of magnitude, this value will be a close approximation.

As opposed to the constant signal cases, this critical coupling value is smaller than
that of the unforced case. This is a result of the random nature of the noise. As the
noise strength can vary, occasionally when the coupling strength is close to the critical
point, a change in the noise can cause the coupling strength required to drop below the
current K value therefore allowing for an earlier onset of oscillation than before. The
oscillations are shown in Figure 16 and the frequency vs coupling strength relationship
is shown in Figure 17.
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Figure 16: The oscillations for the unforced system with matching noise at K=0.55.
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Figure 17: The frequency of the oscillations for the unforced system with matching noise
against the coupling strength.
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5 Conclusion

What this study has shown is ring systems with an even number of elements can begin
to oscillate once the coupling strength has exceeded the threshold, provided there is a
mix of the positive and negative coupling. This and the system’s response to simple
input signals together with its relative stability in the presence of noise makes its use as
a signal detector viable.

The input of small positive constant signals caused the oscillations to become asym-
metric where each element spent different amounts of time in each state in comparison
to the unforced case, and also took different times to transition between states. These
easily visible differences are amplifications of the response to a small signal and therefore
reliably indicate the presence of a signal. The strength of the signal can be measured by
the extent to which these times differ from the unforced response.

These systems of elements also do not require much power to run making them more
efficient and economically attractive. The point of maximum sensitivity of the system,
soon after the bifurcation point when the oscillations begin, can be taken advantage of
if the coupling strength between the elements can be controlled. Another benefit is the
relative lack of initial condition requirements. These systems merely require a frustration
to be present in the ring. This makes it useful for use in practice as initial conditions
are usually very difficult to control.

The addition of noise to the system, while causing the oscillations to lose their
symmetry, does not have much of an impact on the frequency trend, other than the
occasional outlier. This implies the system is relatively resilient to noise increasing its
suitability as a signal detector.

The two-element system has some benefits over the three-element system in that
there are less elements making the ring cheaper and simpler to construct. That less
elements are present also reduces the likelihood of mechanical failure, however there are
some benefits to the three-element system. As can be seen in previous research [4, 2],
the analytical formulae for calculating the critical coupling strength and the frequency -
coupling strength relationship are much more simple which means the measurement of
input signal strengths is easier and more accurate. Further studies on this subject could
cover the response of the system to periodic signals, i.e. sinusoidal signals as the main
electricity form used is AC and whether synchronisation occurs where the frequency of
the oscillations match the frequency of the signal, as well as the possibility of stochastic
resonance when noise is added to the system. Also useful would be a general extension
of the analytical study of this system to achieve more accurate formulas and hence a
better understanding of the systems behaviour.
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