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1 Introduction 
 

Australia’s growing and ageing population and a rise in chronic diseases are 

causing an increased demand for emergency and inpatient services in the country’s 

hospitals (FitzGerald 2012). Currently, many hospitals are operating at or close to full 

capacity a lot of the time. Bed availability is randomly distributed because of the 

random nature of patient arrivals and the duration of treatment. Due to this, episodes of 

congestion can occur, which lead to wide-ranging consequences such as fatigued staff 

and decreased quality of care, amongst others. This demand is projected to increase into 

the future as the proportion of older Australians increases. 

Despite the fact that bed availability is stochastic in nature, most hospitals 

experience regular patterns in their occupancy levels, on both day-to-day and week-to-

week time scales. These patterns can be easily modelled mathematically as Markov 

processes (Qin, Filar 2014).  

Definition 1.1: A finite Markov chain 

A sequence of random variables {  }   
  is a finite Markov chain if it satisfies 

the following criteria: 

• There are finitely many states   {       } and         at every  . 

• The Markovian property is satisfied for all                 : 

 (    |                 )   (    |         ) 
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The Markov chain is homogeneous if, in addition, the following property holds: 

• The time homogeneity property:  (    |      )                     

The Markovian property states that the probability of transitioning to a state is 

only dependent on the current state, but independent of all states visited previously. The 

time homogeneity property implies that the probability of a transition between any two 

states is independent of the number of time periods that have passed before the 

transition occurs. Hence, a homogeneous Markov chain is fully determined by its 

probability transition matrix   (   )     

   
. 

Markov chains have been widely used to model a variety of stochastic 

phenomena where the current situation depends only on the current state (and possibly 

time); see for instance Heyman and Sobel (1984). However, in situations where the 

probability transition matrices may be influenced by a decision maker’s (controller’s) 

actions, the problem to be analysed becomes that of a choice of a “best” Markov chain 

to meet certain performance criteria. The latter usually involve maximising expected 

rewards or minimising expected costs. This class of models is known as Markov 

Decision Processes (MDP’s for short) that have been studied extensively since 

Howard’s original work in 1960. They can also be viewed as discrete, stochastic 

dynamic programming problems to which Bellman’s (1957) backward recursion 

algorithm applies. 

In this application, we shall use a given hospital’s occupancy data to construct 

probability transitions consistent with these data. Also, we introduce a reward function 

that attempts to balance the benefit of maintaining sufficient slack in the occupancy of 

wards versus the cost of diverting patients elsewhere. This information can be given to 

staff in the hospital to change policies in the hospital’s operation, thus achieving lower 

occupancy, higher quality of care, shorter length of stay and higher staff morale, plus 

many more flow-on benefits throughout the health-care system. 

It should be mentioned that this study is preliminary, and its results will form a 

proof of concept of the Markov Decision Process approach to this problem. 

2 Data and Modelling of Probability Transition Matrices 
 

2.1 Data 

The data used in this project was midnight census data at Flinders Medical 

Centre, Bedford Park, SA, from January 2009 to June 2013. The only patients included 

were General Medical and Surgical; these patients make up a large proportion of 

Flinders’ inpatients, approximately 65% of all inpatients (SA Health, 2014). The week 
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between December 25
th

 and 31
st
 inclusive was removed from the analysis as current 

policies heavily minimise bed occupancy during this time. This allows staff to take 

leave over the Christmas-New Year period. 

2.2 Modelling of daily probability transition matrices 

The midnight census data can be modelled as a Markov chain by converting 

each census value into a pre-defined aggregate state and then modelling a probability 

transition matrix from state to state. The census data was approximately normally 

distributed as seen from Figure 2.2.1. 

 

Figure 2.2.1: Normal Q-Q plot of Flinders Medical Centre midnight census data from January 

2009 – June 2013 

A simple, four state, approach has been used in this project as it gives a good 

balance between practice and theory. Too many states make the probability transition 

matrices too inaccurate (and difficult for managers to use), whereas too few make the 

model too coarse. Based on consultation with Flinders Medical Centre (FMC) staff, the 

four occupancy states were defined on the basis of deviations from the mean occupancy. 

The boundaries between the four states are given below. 

Definition 2.2.1: Boundaries between states 

The states {1,2,3,4} will correspond intuitively to Low, Medium, High and Very 

High occupancies as indicated below: 

• Low (   ):     
 

 
 

• Medium (   ):   
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• High (   ):   
 

 
      

 

 
  

• Very High (   ):     
 

 
 , 

where the aggregated states denoted by   actually correspond to collections of 

micro-states denoted by   that are the daily occupancy levels. 

As a consequence of the approximate normality of the occupancy data, the 

proportions of time spent in each state can be estimated. They are as follows: Low, 

31%; Medium, 46%; High, 16% and Very High, 7%. 

Each day can now be classified as a day of one of Low, Medium, High or Very 

High occupancy, and then the transition from day to day can then be classified as one of 

the 16 state-to-state pairs (Low-Low, Medium-High etc.)  

Hence, there are seven daily probability transition matrices,              one 

for each day of the week.    represents transitions from Monday to Tuesday,    

represents transitions from Tuesday to Wednesday and so on. Note that because these 

matrices, when extracted from data, are distinct the daily Markov chain is 

inhomogeneous. However, the Markovian property is generally well satisfied (see 

Section 2.4 below). 

2.3  Daily probability transition matrices 

One of the daily probability transition matrices derived from the data can be 

found in Table 2.3.1. The complete set can be found in Appendix A. The given matrix is 

for transitions from Monday to Tuesday (  ). 

0.8293 0.1707 0 0 

0.1525 0.7966 0.0508 0 

0 0.4694 0.4286 0.102 

0 0.0385 0.6538 0.3077 

Table 2.3.1: Monday to Tuesday probability transition matrix of Flinders Medical Centre 

midnight census data from January 2009 – June 2013 

It can be seen from the above that the first two diagonal entries of    are 

dominant. Thus the probability of remaining in a Low or Medium state on Tuesday as 

the one the system was in such a state on Monday is clearly the highest. However, for 

High and Very High states, there remain significant probabilities of either moving to or 

remaining in the Very High state. Arguably, the latter is an undesirable situation. A 

range of interesting patterns of that type can also be observed by examining the 

probability transition matrices for the remaining days. See Appendix A. 
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2.4 Weekly probability transition matrices 

It was found by Qin and Filar (2014) that weekly probability transition matrices 

              can be calculated as products of the daily probability transition 

matrices such that  

                                                 . (1) 

Therefore,    represents weekly probability transitions from a Monday to the 

following Monday,    represents similar transitions from a Tuesday to the following 

Tuesday, and so on. It should be noted that these matrices observe the time 

homogeneity property, thus defining a homogeneous Markov chain. 

Table 2.4.1 contains a Monday-to-Monday weekly probability transition matrix 

that was calculated from the daily probability transition matrices given in Appendix A. 

The full set of weekly probability transition matrices can be found in Appendix B. 

 

Table 2.4.1: Monday-to-Monday probability transition matrix of Flinders Medical Centre 

midnight census data from January 2009 – June 2013 

An important observation to be made when comparing daily and weekly probability 

transition matrices is that the latter contain no zero entries and hence are automatically 

irreducible. From discussions with hospital staff we inferred that in terms of management 

policies, it is the long-term behaviour induced by the weekly probability transitions that could 

influence these policies rather than any daily transitions. 

2.5  Steady State Distribution 

In a finite Markov chain, two states communicate if it is possible to reach one 

from the other in a finite number of transitions, and vice versa. A Markov chain is 

irreducible if it contains a single, exhaustive, class of communicating states. This is the 

case in each of the weekly transition matrices: each state communicates with all of the 

others, therefore they form a single exhaustive communicating class. These two 

conditions are sufficient for the unique steady state distribution to exist. 

  

0.2101 0.5405 0.1794 0.07 

0.1837 0.5182 0.2012 0.0969 

0.1539 0.4804 0.2281 0.1377 

0.1282 0.4427 0.2521 0.177 
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Definition 2.5.1: Steady State Distribution 

The steady state distribution,  , of a finite, irreducible Markov chain is given by 

the unique solution to the following equations: 

                   ∑  

 

    

The resulting vector,  , gives the probability of being in any particular state as 

    (the steady state probability). 

Let         denote the steady state distributions of        . We shall use the 

notation    (               ) where     denotes the steady state probability of the 

Very high state on Thursday. 

Figure 2.5.1 shows the trends of these weekly steady state probabilities. For 

instance, the above mentioned     is depicted as the fourth point on the black curve in 

that figure. 

 

Figure 2.5.1: Comparison of steady state probabilities for each day of the week 

Figure 2.5.1 shows that as the week progresses, the likelihood of being in a 

higher occupancy state decreases, reaching a minimum on Fridays. This coincides with 

the discharge of patients for the approaching weekend. On weekends, the probability of 

being in a higher state begins to increase again. 

 



 

-7- 

2.6 Validation of the Model 

It is important to validate the transition matrices to account for any major 

deviations from the observed data. There is a rule of thumb to use the first two-thirds of 

the data for parameter estimation, and the remaining one-third for validation. We chose 

to do the validation on the basis of fit of the steady state distributions. The steady state 

distributions,        , were found, as above, for each weekly probability transition 

matrix. For the remaining one-third of the data, the proportions of weekly occupancy 

lying in states Low, Medium, High and Very High were calculated for each day of the 

week, resulting in seven vectors    (               )           . The discrepancy 

between the fitted model and the data was measured by the index: 

   
 

 
∑[

       

   

]

 

 

             

where     is the steady state probability of being in state k for the fitted probability 

transition matrix and     is the corresponding proportion for the remaining one-third of 

the data. The index    is the mean squared deviation error. When it is small, it can be 

argued that the fitted parameters are adequate. The calculated    values are given 

below: 

   0.1552 

   0.0588 

   0.0347 

   2.3991 

   0.1142 

   0.1656 

   0.0581 
 

Figure 2.6.1: Calculated d values for each weekly stationary distribution 

For six out of the seven daily transitions, the calculated d values were, indeed, 

small (ranging from 0.04 to 0.17). For the remaining one, Thursday to Friday, the 

calculated d value was 2.3991. While this is high, the steady state vector    

(                           ) was being compared to the observed frequencies of 

occupancies being in the Low, Medium, High and Very High states in the final third 

used for validation. The latter was    (                          ). Thus, it is 

only the deviation in the low probability Very High state that contributes most to this 

high index value. In view of this, we decided that for the bulk of the estimated 

parameters the modelled probability transitions were adequate. 

  

(2) 
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3 Derivation of the Markov Decision Process 
 

Next, we cast the congestion relief problem in the framework of a finite horizon 

Markov Decision Process. Towards that goal, we need to define probability transitions 

that depend on decision maker’s actions and the immediate “rewards” to the decision 

maker resulting from a choice of a given action in a given state. We adopt notation 

similar to that used in Filar and Vrieze (1997). 

Definition 3.1: Markovian Transition Probabilities and Rewards of the MDP 

In a finite Markov Decision Process, the system is in state     {       } at 

time t, and the decision maker is obliged to choose an action    ( )  {        }. 

As a result of this choice, the following stochastic transition occurs: 

  (      )   (       |         ), 

and an immediate reward (cost if negative) is accrued 

  (   ). 

Note that, in some states, there could be only a single action that corresponds to a 

decision “no action needed”. Indeed, this is the case in the Low and Medium occupancy 

states in our model. To fully describe the MDP model we need to specify the set S of 

states, the sets A(s) of actions available in each state, the time horizon T and the above 

probability transitions and rewards. These will be called the parameters of the MDP. 

3.1 MDP parameters 

In our four state occupancy model, actions will require physical interpretation 

that correspond to various levels of intervention designed to lower the occupancy. Some 

of the parameters used in the original probability transition matrices will stay the same 

in the corresponding MDP to be developed, such as the states and their definitions. 

Also, it should be noted that the transition probabilities will depend on the actions taken 

only to the extent that the actions taken would have moved the system from one state to 

a lower state if nothing else occurred. This is because the stochasticity in the model is 

due to external factors beyond the decision maker’s control. The latter can be taken 

advantage of because the probability transitions of the MDP model can be easily 

derived from the historical data of the hospital’s occupancy. 

3.1.1 Actions 

Many possible actions could be taken to mitigate congestion episodes in a hospital. 

They include discharging patients early, cancelling elective treatments or transferring 

some patients to other hospitals. All of these actions involve removing some number of 
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patients from the system, so each possible action will be defined as removing a multiple 

of four patients at a time from the system up to some practical upper bound. In this 

proof of concept exercise we have decided that the set of all possible actions will be: 

 0: No action 

  : Remove four patients 

  : Remove eight patients 

  : Remove 12 patients 

  : Remove 16 patients 

  : Remove 20 patients. 

Twenty was chosen as a cap for removal of patients, as it seemed that removing 

any more patients than that was impractical when considered on top of the current 

policies. 

We have also decided that  ( )   ( )  { }  ( )   ( )  {       }. 

Thus, the patient lowering actions can be invoked only in the High and Very High 

states. 

3.1.2 Rewards 

Next, the reward functions  (   ) need to be modelled. The challenge here is to 

capture both the benefit of reducing occupancy when it is too high and the cost resulting 

from inconveniencing patients and the associated harm to the reputation of the hospital. 

Even though these are qualitative benefits and costs, we require a quantitative 

expression that balances them.  

Since our states are labelled 1,2,3,4 in the order of degree of occupancy - and the 

actions are also labelled in the order of increasing numbers of patients being removed - 

it is natural to assume that the relief provided by a removal of a certain number of 

patients is more significant in the Very High state than in the High state. The cost, on 

the other hand, is assumed to increase exponentially with the number of patients 

removed from the system. The following reward functions involve three nonnegative 

parameters         whose role is to capture an appropriate trade-off between the above 

cost and benefit. The       term in the first equation enables the High state’s reward 

function to peak at a more reasonable position when compared to the corresponding 

function for the Very High state. The following forms of the function have been adopted 

for each state: 

 (   )   [(
     

   
    )       (     )]       ( ).  (3) 

 (   )    [(
  

   
    )         ]       ( ).   (4) 
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The first term of (3) and (4) represents the benefit of the increase in bed space 

by executing action a, the second term quantifies the loss of reputation for the hospital 

for removing 4a patients. The parameter   must be small enough so that the exponential 

term does not dominate the entire expression. A method of numerical calibration was 

used to determine the parameters needed for the function. For the states   {   }, 

namely, the Low and Medium states, the only available action is action 0, and hence the 

immediate rewards were selected to be constants representing a small benefit from 

being in a desirable state. The resulting  (   ) functions used in our MDP model are: 

 (   )            (5) 

 (   )            (6) 

 (   )   
 

 
[(

     

   
    )      

 

 
     (     )]       ( ). (7) 

 (   )  
 

 
[(

  

   
    )               ]       ( ).  (8) 

The following figure shows a plot of the values of the reward functions against 

the number of patients removed for the High and Very High states. The two remaining 

states have a single possible action; hence they are excluded from the plot. 

 

Figure 3.1.2.1: Plot of the High and Very High reward functions,  (   ) and  (   ), 

for zero to 20 patients removed 

The reward function,  (   ), for the Very High state begins slightly negative 

(indicating a slight penalty for no action), rises to a peak when approximately 14 

patients are removed after which it decreases. The reward function for being in the High 

state,  (   ), also begins slightly negative, but peaks when eight patients are removed. 

It then decreases and becomes a cost (negative reward) when more than 19 patients are 

removed. 
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The maximum reward that can be accrued when in the Very High state is greater 

than that for High because freeing up extra capacity carries a greater premium when 

there are fewer beds available. This also allows for a larger decrease in occupancy 

before the cost of inconveniencing patients overcomes the benefit of increased capacity. 

The reward accrued when fewer patients are removed is greater when in the High state 

in comparison to the Very High state as this has less effect in alleviating the extreme 

congestion encountered in the Very High state, this is why the green curve lies above 

the red curve in the range [0,8). Similarly, it is natural that the green curve lies below 

the red curve for higher values of a. 

 3.2 Finding Probability Transition Matrices under Actions 

The actions defined in a Markov Decision Process alter the probabilities of a 

transition from one state to another. There needs to be a simple way to estimate these 

probabilities. One method of doing this is by splitting the aggregated states into micro-

states for each number of beds occupied. Let       be the number of observed transitions 

from s beds occupied on one day to    beds occupied on the following day, and    be 

the total number of days that s beds were occupied, thus: 

 ̂(       |    )   
  

    

  
      (9) 

This is valid without considering the effects of any actions on these 

probabilities. When action a is taken, the transition effectively becomes a transition 

from      beds occupied to    beds occupied, which is estimated by: 

 ̂(       |         )   
 

       

     
    (10) 

Using this equation it is now possible to estimate the new transition probabilities 

of moving between the aggregated states under a given action. By the rules of calculus 

of probabilities, these were found to be: 

 (       |         )         (11) 

 ∑ ∑ (       |         ) (    |    )

        

 

The first factor in each of the terms of the double summation in (11) is equal to 

the probability of moving from each micro-state in aggregated state at time   to each 

micro-state in the aggregated state at time    , conditioned on the micro-state at time 

  being s and the action chosen being a. The second factor is the probability of the 

micro-state at time   being   conditioned on the macro-state being  . This second factor 

will be estimated with the help of steady state probabilities in a natural way. This leads 

to the following formula: 
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(13) 

 (       |         )  ∑ ∑ (       |         )
  

∑      
        

 

           (12) 

By substituting (10), the above formula can be further simplified to: 

 ̂(       |         )  ∑ ∑
        

     

 ̂ 

∑  ̂    
        

 

The use of actions in the above formula presents a technical challenge, as the 

raw data matrix of observed transitions (     ) is quite sparse. This means that some 

rows that will be needed in the computation of the probabilities are empty. 

To alleviate this problem, the empty rows of the matrix were replaced with 

estimates. We chose to replace each empty row with the closest non-empty row. All 

entries were rounded up to the nearest integer, as a fraction of a transition count is 

inappropriate. Once all empty rows have been removed, the calculations for each of the 

new transition probabilities are well defined. 

3.2.1 Steady state distribution of the sparse matrix 

Another difficulty with using such sparse probability transition matrices lies in 

calculating their steady state distributions. Because some transitions are not observed on 

a particular day and the sparseness of the matrix results in multiple communicating 

classes, the unique steady state distributions may not exist. 

However, the raw data transition matrix may be re-constructed in such a way 

that there is only one communicating class. This can be done by constructing a matrix 

with every transition in the data set and then adding a virtual transition from the last 

micro-state observed back to the first one. This amounts to a small perturbation of the 

raw data transition matrix. Now every observed micro-state can be reached from every 

other observed micro-state, which enables the unique steady state distribution to be 

calculated for each micro-state on each day of the week. In the constructed matrix, each 

set of transitions for each day of the week occupies its own unique block of rows and 

columns that make it easy to extract the steady state distribution from the matrix. The 

layout of this matrix is shown in Figure 3.2.1.1. 
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Figure 3.2.1.1: Diagram of the sparse matrix constructed to calculate the steady state 

distribution for each day of the week 

The steady state vector for the constructed matrix is made up of seven sections, 

each corresponding to a day of the week. The corresponding sections for each day can 

be removed from the larger vector and normalised to form the steady state distribution 

vector for a particular day of the week. 

Now that the steady state distribution has been calculated, it is possible to 

estimate the daily probability transition matrices for each day of the week under any 

given action a. The Markov Decision Process is fully defined once the actions, reward 

functions and probability transition matrices are known. 

4 Finding an Optimum Policy for the MDP 
 

With a fully defined MDP, the next task is to find the optimum policy for the 

given process. A policy is a sequence of actions that defines what happens to the MDP 

on a given time horizon. Strictly speaking, the preceding only defines a deterministic 

Markov policy, but these are sufficient to find optimal policies even in larger policy 

spaces that are not of interest here (e.g. see Filar and Vrieze (1997)). 

Using a finite time horizon, the standard method for calculating optimal policies 

in an MDP is the Dynamic Programming algorithm. This can be very time consuming 

due to the well-known phenomenon known as “the curse of dimensionality”. The latter 

is not too much of a problem when the time horizon is short and the numbers of states 

and actions are small. Fortunately, the MDP in our application is sufficiently small that 

the computational burden is reasonable. A time horizon of seven days will be used in 

this analysis to replicate the week-long planning patterns at Flinders Medical Centre. 
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4.1 The Backward Recursion of Dynamic Programming 

Algorithm 

As mentioned above, the main algorithm to find an optimal policy is the 

Backward Recursion of Dynamic Programming algorithm, which was developed in 

1957 by Bellman. The notation used below is the notation from Filar and Vrieze (1997). 

The Backward Recursion algorithm is a recursive algorithm that works as follows: 

Step 1 (Initiation): Set    ( )             and define 

   
 ( )    

         ( ){ (   )  ∑   ( 
 |   )   ( )

 
    } 

   ( )   (    
 )      ( ){ (   )} 

 Set the expected reward for being in each state to zero and then define the 

optimal action for each state as the one which maximises the immediate reward. In this 

step, the summation term collapses to zero. Finally, set the expected reward for each 

state to the maximum immediate reward. 

Step 2 (Recursion): For each           and each     

     
 ( )    

           ( ){ (   )  ∑     (  |   )    ( )
 
    } 

   ( )   (    
   )   ∑     (  |   )    ( )

 
     

Working backwards in time, for each state in the state space, this step of the 

algorithm defines an optimal action to be taken at that time. 

Step 3: Construct a policy 

      
    

      
   

By putting together the actions which maximise the expected reward for each 

state and time point combination, the optimal policy is found. 

The validity of the algorithm depends on Bellman’s principle of optimality, 

which is summarised well for this application by Filar and Vrieze (1997):  

‘If an optimal reward can be found for the process with (n-1) steps left, 

then the optimal reward can be found for n steps left by maximising the 

sum of the immediate reward and the maximal reward for the process 

with (n-1) steps left.’ 

The proof that    is in fact the optimal policy is given on page 20 of Filar and 

Vrieze (1997). 
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4.2 The Optimal Solution to the MDP 

Running the Backward Recursion of Dynamic Programming algorithm on the 

Markov Decision Process defined earlier yields an optimal solution for each state and 

time point as follows, where the columns correspond to the seven days of the week 

starting on Monday: 

   [

  
  

   
   

  
  

       
       

] 

The first two states, Low and Medium, only have one possible action, hence the 

repetition of action zero in the first two rows. The final two rows contain the optimal 

actions to be taken on each day if the Markov process is in either the High or Very High 

states. If the MDP is in the High state on Monday, 12 patients should be dismissed and 

eight on Tuesday through Sunday. If the MDP is in a state of Very High occupancy on 

Monday or Thursday, then 16 patients are to be dismissed (under the policy   ) and 12 

patients should be dismissed on all other days of the week. 

5 Results 
 

Now that the optimal policy has been found, the improvement between the 

current situation and the optimal policy can be quantified. As the time horizon 

considered was a calendar week, the weekly steady state distributions of         

under the optimal policy   will be compared with the corresponding distributions under 

the existing mode of operations. The comparison of steady state probabilities are shown 

in Figure 5.1 below. In the figure, each of the four panels corresponds to the four 

aggregate states Low, Medium, High and Very High. The red curve plots the 

probabilities of being in the fixed aggregate state on each day of the week under the 

optimal policy and the blue curve plots the corresponding probabilities under the current 

mode of operations. 
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Figure 5.1: Comparison of steady state distributions for weekly probability transition matrices 

under current conditions and the optimal policy 

From Figure 5.1, it can be seen that the optimal policy makes a significant 

difference in the steady state probabilities for each day of the week. There are increases 

in the probabilities of being in the two lower occupancy states for nearly every day of 

the week, demonstrated by the fact that the red curve lies above the blue curve. There 

are also analogous decreases of the probabilities of being in the upper capacity states for 

each day of the week, demonstrated by the red curve lying below the blue curve in the 

bottom two panels. Note the significant improvement in the proportion of days that are 

considered to have Very High occupancy; it drops to one percent or below for each day 

between Tuesday and Saturday inclusive. Sunday and Monday are much larger than one 

percent, but are still lower compared to the current situation by approximately one-third 

and two-thirds respectively. The decrease in most of the High steady state probabilities 

is also a desirable outcome. 

Figure 5.1 also indicates that there is a slight increase in the High state on a 

week ending on a Sunday when compared to the current policy and a slight decrease in 

the Medium state on a Friday. This seems counterintuitive, but those anomalies are 

offset by corresponding changes in the probabilities of being in the adjacent states.  

On Fridays, the decrease in probability of the process being in the Medium state 

is offset by an increase in being in the Low state. On Sundays, the probability of being 

in the High state increases slightly compared to the current policy, but the probability of 

being in the Very High state drops by approximately one-third. This is an advantageous 

outcome as it is the days of Very High occupancy that are the worst in terms of causing 

congestion episodes. 
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6 Conclusion and Future Improvements 
 

Congestion in hospitals is quickly becoming a considerable hindrance to quality 

of care and to staff morale. Fortunately, hospital occupancy data exhibit regular 

patterns, which make it possible to identify trends and subsequently to try to mitigate 

against congestion. Occupancy levels can be modelled as Markov chains on a week-to-

week basis, and can be formulated as Markov Decision Processes with the addition of 

actions and associated rewards. These decision processes can be used to find an optimal 

policy that maximises the expected reward over the weekly horizon. Steady state 

distributions can be used to help quantify the difference between occupancy rates under 

current policies and under the identified optimal policy. This shows the effectiveness of 

the optimal policy over the current practice. 

The methodology outlined here is generic in the sense that it could be adapted to 

policies of another hospital. Of course, the parameters would have to be re-estimated 

and re-calibrated based on the data of that hospital. If hospital managers were interested 

in the proposed methodology, it is clear that the model could be extended to include 

more states and more actions so as to capture more accurately the difficulties 

encountered in real life. Another portion of the model that could be fine-tuned is the 

definition of the reward functions, which could include a dependency on the state that 

the process moves to as well as the current state or could be modelled using different 

base formulae. 
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Appendix A Daily Transition Matrices 
 

    0.8293 0.1707 0 0     0.6015 0.3985 0 0 

 0.1525 0.7966 0.0508 0  0.069 0.6322 0.2759 0.023 

 0 0.4694 0.4286 0.102  0 0 0.5455 0.4545 

 0 0.0385 0.6538 0.3077  0 0 0 1 

          

    0.8654 0.1346 0 0     0.3488 0.6395 0.0116 0 

 0.216 0.728 0.056 0  0 0.5648 0.3704 0.0648 

 0 0.5 0.4318 0.0682  0 0.0333 0.3667 0.6 

 0 0.3077 0.3077 0.3846  0 0 0 1 

          

    0.8333 0.1667 0 0     0.7333 0.2333 0.0333 0 

 0.2033 0.6992 0.0976 0  0.1538 0.7265 0.1111 0.0085 

 0 0.4333 0.5 0.0667  0.0192 0.4808 0.4038 0.0962 

 0 0 0.5 0.5  0 0.0286 0.4 0.5714 

          

    0.8941 0.1059 0 0      

 0.5135 0.4775 0.009 0      

 0 0.7742 0.1935 0.0323      

 0 0.1429 0.5714 0.2857      
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Appendix B Weekly Transition Matrices 
 

    0.2101 0.5405 0.1794 0.07     0.612 0.3477 0.0327 0.0076 

 
0.1837 0.5182 0.2012 0.0969 

 
0.5326 0.3974 0.0549 0.015 

 
0.1539 0.4804 0.2281 0.1377 

 
0.421 0.4589 0.092 0.028 

 
0.1282 0.4427 0.2521 0.177 

 
0.3908 0.4745 0.1028 0.0319 

          

    0.2625 0.5557 0.1443 0.0375     0.41 0.4624 0.1034 0.0241 

 
0.2284 0.5418 0.1784 0.0513 

 
0.3651 0.4655 0.1293 0.0401 

 
0.1837 0.5108 0.2317 0.0738 

 
0.2992 0.4597 0.1683 0.0728 

 
0.1459 0.4709 0.2858 0.0974 

 
0.2678 0.4557 0.187 0.0895 

          

    0.3531 0.5223 0.1017 0.0229     0.1558 0.5453 0.2041 0.0949 

 
0.3089 0.5319 0.1261 0.0331 

 
0.1365 0.5176 0.2191 0.1268 

 
0.242 0.5389 0.1678 0.0513 

 
0.1194 0.4866 0.2288 0.1652 

 
0.152 0.5353 0.2322 0.0806 

 
0.0934 0.4349 0.2405 0.2313 

          

    0.4075 0.466 0.1096 0.0169 
     

 
0.3652 0.4788 0.1313 0.0248 

     

 
0.2805 0.4977 0.1787 0.0431 

     

 
0.1903 0.5026 0.2385 0.0685 

     

 


