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Abstract

Dynamic pattern formation at the junction between two cells has recently
been observed experimentally and related to cell extrusion. This behaviour was
re-created by modelling the 2-dimensional actomyosin cell cortex as an active
fluid. The model qualitatively reproduced both the dynamic and stable pat-
tern formation which had been experimentally observed in various physical sys-
tems. Phase diagrams for the analogous 1D model provided evidence dynamic
behaviour occurred over a large range of parameter values. In the 2D model
stress-induced actin breakdown was shown to give more connected chains of
actin, whereas with a constant breakdown rate more isolated peaks tended to
form.

1 Introduction

The interaction of actin and myosin can lead to spontaneous pattern formation on
the cell cortex [1]. Recent research has allowed the observation of actin, myosin and
cadherin concentrations at the interface between two epithelial cells, both on the zonula
adherens and on the two-dimensional surface adjoined to it [2]. Both dynamic and
static patterns were observed: static patterns involved multiple stationary peaks of high
actin concentration, while dynamic behaviour was typified by peaks moving, merging,
collapsing and new peaks spontaneously forming. 1 The qualitative behaviour of these

1See Supplementary Material for videos. In particular the left and right images of V6 capture both
behaviours.



patterns was shown to be related to whether or not the cell would be extruded from
the epithelial layer.

Many different models have been proposed for the macroscopic interaction of actin
and myosin, but most agree in treating the system as an active fluid, that is, a fluid
in which the local stress in an explicit function of the local concentration of one or
more species. This is physically reasonable (as in the presence of myosin large actin
molecules will spontaneously contract, increasing local stress), and models based on
this hypothesis have been successfully applied to a diverse range of physical systems,
including lammellipod behaviour in moving keratocytes [3,5] and muscle sarcomeres
[6]. The spontaneous formation of patterns in one of these models was reported in [1],
but this model was only in one dimension and the only pattern which was observed was
a single, stable peak of high actin concentration. They did not observe the formation of
stable, multipeak solutions or of dynamic solutions, the two most common behaviours
observed experimentally. In the following we demonstrate that a natural extension
to this model allows the qualitative reproduction of both these types of behaviour, in
both one and two dimensions.

2 Development of Mathematical Model

The mathematical model developed was based upon the following qualitative under-
standing of the biological system (see Figure 1).

1. Actin Network Condensation: Actin molecules are large polymers composed
of many monomers, and given the right conditions these monomers will sponta-
neously polymerise.

2. Peak Formation: In the presence of myosin actin molecules will spontaneously
contract (it is this behaviour which all muscles systematically exploit.) Under the
right conditions they may contract to form concentrated peaks which continually
pull the local velocity field inward (this inward flux is balanced by the outward
diffusion). These peaks may be stable or dynamic.

3. Actin Turnover: Large actin molecules only have a finite lifespan, and eventu-
ally break back down into monomers. It is unclear to what extent this breakdown
is stress induced.



Figure 1: Qualitative Model for Actin-Myosin-Cadherin Behaviour on Cell Cortex.
Source: [2]

It was natural to model the movement of actin, c, with a convection-diffusion-
reaction equation, and to use a convection-diffusion equation for the conserved myosin,
m:

ct = cxx − Pect + α(c0 − c) (1)

mt = mxx − Pe′mt. (2)

The velocity field at a given time was derived by first considering the following stress
term (as in [1]):

σ = η∂xv + (ξ∆µ)0

(
cm

1 + c

)
Here there are two independent contributors to stress: a viscous term (η∂xv) and an
active stress term related to the concentration of actin and myosin (it is proportional
at low concentrations, but at high concentrations of actin (for a saturated system) the
increase in stress is limited.) This term was then combined with the force balance:

∂xσ = γv.

After non-dimensionalisation, we get:

v = vxx +

(
cm

1 + c

)
x

. (3)

Several alternatives to this model were conceived. The possibility of adding a third
differential equation to describe the actin monomer concentration was considered: in



this system the combined concentration of actin polymers and actin monomers would
remain conserved. However, the diffusivity of actin monomers would be significantly
higher than the diffusivity of the polymers, and this meant the modelled monomer
concentration was approximately uniform. In this case the more complex model ap-
proximately simplified to the model suggested above, so it was not considered further.

Another alternative was to remove the myosin term completely, and assume a
uniform background myosin concentration. To test this, the diffusivity of myosin was
taken to be 4 times larger than actin [5] and the model above was run with this
restriction. Under these conditions the myosin concentration was nearly uniform, and
indeed there was no discernible difference between the case of uniform myosin and
the model which accounted for these slight fluctuations. Thus for most analyses this
simpler model was used:

ct = cxx − Pect + α(c0 − c) (4)

v = vxx +

(
c

1 + c

)
x

. (5)

The possibility of allowing the breakdown of actin to be stress-dependent was con-
sidered, and some of the qualitative effects of this in the two dimensional case are
discussed below.

2.1 Two Dimensional Extension

This model was extended to two dimensions in a natural way. The convection-diffusion-
reaction equation became:

ct = ∇2c− Pe∇ · (cv) + α(c0 − c) (6)

The velocity field equation must be slightly extended to account for the occurrence of
both bulk and shear viscosities in higher dimensions:

v = λ∇2v + (1− λ)∇(∇ · v) +∇
(

c

1 + c

)
. (7)

3 One Dimensional Numerical Modelling

Initially we ignored the source-consumption term, setting α = 0, which reduced our
model to the conservative one found in [1]. As found there, only two types of behaviour



Figure 2: Single Stable Peak: concentration profile vs time

were observed: no peak would form, or a single stable peak would form (though for
larger system multiple peaks would initially form, and these would merge, see Figures
2, 3 and 4). For the single stable peak, the net inward flux induced by the velocity
field was exactly balanced by the diffusion away from the highly concentrated peaks.

A stability analysis for this system allowed the determination of the regions of
the parameter-space in which patterns spontaneously formed (see [1]). However, the
observations that dynamic behaviour was not possible and that multiple peaks were
not stable (they eventually must join to form one large peak) couldn’t be demonstrated
analytically.

Next, the source consumption term was added to the model. Intuitively it was felt
that this would allow for more dynamic behaviour, as it would allow new peaks to form
in vacant regions and old peaks to break down (as observed experimentally). This was
the case, and a few typical examples of some of the dynamic behaviour observed are
given in Figures 6 and 7. What was perhaps more surprising was that the addition of
the source-consumption term also stabilised multiple peak solutions, as can be seen in
Figure 5. The exact reasons for this are still not fully understood.



Figure 3: Single Stable Peak: velocity profile vs time

Figure 4: Two Merging Peaks: concentration profile vs time



Figure 5: Accounting for actin breakdown and formation can allow stable multi-peak
solutions

3.1 One Dimensional Phase Diagram

The biological system is in general dynamic, though occasionally multiple stable peaks
may form. Thus in any reasonable model large portions of the available parameter-
space should exhibit dynamic behaviour, and in order to test this, numerical phase
diagrams were constructed for this system. Figure 8 shows a typical example, made
from simulations of domain size 4π.

A few points should be observed here: firstly, the phase-diagram has a ring-like
structure, with regions of dynamic behaviour sitting on the border between regions
with different numbers of stable peaks. Here the system cannot decide which stable
regime to sit in to, so it moves around dynamically. However we also see that there
is a second regime of dynamic behaviour: for sufficiently high Peclet number and
concentration we have large regions where the system doesn’t stabilise. It is likely the
biological system, which is usually dynamic, would sit in a region like this.



Figure 6: With actin turnover, peaks may move around seemingly randomly, while still
remaining separate from each other

Figure 7: Actin turnover also permits the formation of new peaks in vacant areas and
the merging of two peaks into one



Figure 8: Numerically generated phase diagram of 1D system. α = 1 throughout. Red
regions denote dynamic behaviour, and blue stable behaviour.

4 Two Dimensional Numerical Modelling

Apart from the zonula adherens, the biological system of interest is a two dimensional
surface along the junction between two cells, and so it is essential the proposed model
gives 2D behaviour qualitatively similar to the physical system. A number of videos
are available in the Supplementary Materials which show the behaviour of the physical
system, but it can roughly be summarised as follows:

• The system is composed of many discrete clumps of actin and myosin.

• In some parameter domains (in particular when the actin turnover is reduced,
as in the right hand side of video V6) these clumps remain stable and do not
interact or move for long periods of time.

• In most parameter domains, clumps are more dynamic: they can be observed
moving around, merging together, splitting apart and forming in formerly vacant
regions.

The two-dimensional model described by equations (6) and (7) was modelled using
a Lax-Friedrichs finite difference method (see Appendix A for a description of the
numerical method). On a 4π × 4π domain with periodic boundary conditions, as the
Peclet number was increased the system demonstrated the three types of behaviour



Figure 9: Unsymmetrical stable patterns in 2D

observed in the one dimensional case: no pattern formation, stable pattern formation
and dynamic pattern formation. The stable patterns could form in a number of different
geometric arrangements (see figures 9 and 10, along with videos V3 and V4), and
for this reason there was no dynamic behaviour between different domains of stable
arrangements, as occurred in the one dimensional case (i.e. the phase diagram wouldn’t
have the 1D case’s ring-like structure.) However, the region of dynamic behaviour for
higher Peclet numbers remained.

As can be seen in videos V1 and V5 in the Supplementary Materials, when the
model behaved dynamically it was qualitatively similar to the real system. In the
dynamic region peaks move around on their own accord, and regularly merge, split and
form in previously vacant regions. Figure 11 shows a typical snapshot of this behaviour.
Furthermore, in different parameter regimes (most notably with lower Peclet number
and with less actin turnover) we see a variety of stable patterns, strongly reminiscent
of the physical system’s behaviour when actin turnover is limited (compare the two
parts of V6, and the relationship between dynamic and stable models (e.g. V1 and
V3) in the Supplementary Materials). This simple model thus seems to capture much
of the qualitative behaviour of the system.



Figure 10: These stable peaks in 2D have effectively reduced to the 1D case

Figure 11: A snapshot of the dynamically moving, merging and splitting peaks in the
model with constant breakdown rate, described by equations (6) and (7)



On the other hand, while in some experiments the peaks tend to be relatively
isolated and circular (as in this model), often the peaks in the physical system can take
more irregular shapes. Altering the convection-diffusion-reaction equation slightly, so
that the rate constant governing the breakdown of actin is proportional to the actin
concentration, we get a modification of (6):

ct = ∇2c− Pe∇ · (cv) + α(c20 − c2). (8)

This change ultimately has the effect making the breakdown of the large actin poly-
mers stress-dependent, which is quite reasonable physically. When this model is run
the large, symmetric peaks become less stable, and peaks tend to string together in
irregular, connected patterns, much like in the physical system (see video V2 in Sup-
plementary Material, along with Figure 12). Note that this model does not artificially
increase stress along any particular direction: at all times the clumps of actin pull sym-
metrically in all directions, which is reasonable given that in reality they form isotropic,
tangled clumps. The breaking of symmetry associated with the chains of actin found
in this model is thus an emergent phenomena caused by the strong attraction of actin
clumps to their nearest neighbours.



Figure 12: A snapshot of the dynamically moving, merging and splitting peaks in the
model with concentration dependent breakdown rate, described by equations (8) and
(7)

5 Conclusions

A simple 2D model of the cell cortex as an active fluid was able to reproduce much
of the qualitative behaviour of the junction between two cells. Analysis of the one
dimensional case demonstrated that dynamic pattern formation occurred for a large
range of parameters, as required for the biological system. It also demonstrated that
actin turnover was essential both for the formation of multiple stable peaks of actin
and also for dynamic movement, creation and destruction of peaks. The qualitative
behaviour of the 2D system was very similar to that observed experimentally, with
both dynamic and stable patterns observed in different parameter regimes. The dy-
namic behaviour was also influenced by whether or not the rate of breakdown of actin
was stress dependent: when it was stress dependent longer chains of actin tended to
group together, more reminiscent of some observed systems. While this model provides
qualitative validation of the idea that dynamic pattern formation arises spontaneously
out of the active acto-myosin system, work is still required before it could give any
quantitative predictions.
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Appendix A - 2D Numerical Method

Suppose we want to model the following convection/diffusion equation:

ct = −Pe · (vc)x + cxx. (9)

If we decide to use the Lax Friedrichs finite difference method, we approximate the
advection part of the PDE by the equations:

cn+1
j =

1

2

(
cnj+1 + cnj−1

)
− Pe∆t

(
(vc)nj+1 − (vc)nj−1

2∆x

)
(10)

This method has significant numerical diffusion, as can be seen by rearranging it
slightly:

cn+1
j = cnj − Pe∆t

(
(vc)nj+1 − (vc)nj−1

2∆x

)
+

(
(∆x)2

2∆t

)
∆t

(
cnj+1 − 2cnj + cnj−1

(∆x)2

)
(11)

Here we see we are modelling a convection-diffusion equation 2 with numerical
diffusion equal to

Dnum =

(
(∆x)2

2∆t

)
(12)

Thus we don’t explicitly need to include a diffusion term - if we choose our param-
eters so Dnum ≈ 1, then we will have a valid model for (9).

Stability and Stepsize

From now, refer to Pe as the number in (9) and Pea as the actual Peclet number we
are physically modelling. There is a discrepancy because (as can be shown from the
non-dimensionalisation)

Pea =
Pe

Dnum

(13)

As mentioned before, we’d ideally like Dnum ≈ 1 so that Pe = Pea, but we won’t
assume this for now.

The CLF stability criterion approximately requires

Pe|v| < ∆x

∆t
(14)

2Accurate to second order accuracy, according to [4].



and substituting this into (13) and (12) gives

Dnum =
(∆x)2

2∆t
>
Pe|v|∆x

2
(15)

and so
Pe

Dnum

= Pea <
2

|v|∆x
(16)

or equivalently

∆x <
2

Pea|v|
. (17)

This is an explicit limit on the size of ∆x, and it is not unreasonable. Note that
|v| ∼ f(x, t), and this condition must be satisifed at all times and at all points in space.

Higher Dimensions

In 2 dimensions the CFL stability condition changes to

Pe|v| < 1√
2

∆x

∆t
(18)

and the numerical diffusion changes to:

Dnum =
(∆x)2

4∆t
. (19)

Combining these we have

Dnum =
(∆x)2

4∆t
>
Pe|v|∆x

2
√

2
(20)

and so

∆x <
2
√

2

Pea|v|
(21)

If we assume that vx = vy, then |v| =
√

2vx and so we get

∆x <
2

Peavx
(22)

which is exactly the same condition as we had in the 1D case.



Practical Choices

For a given Pe, we should pick a value of |v| which probably won’t be exceeded (usually
|v| < 0.25 is reasonable) and then use (21) to find the maximum stepsize, which should
be used. ∆t is then calculated from (19) so that Dnum ≈ 1.


