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1 Background

Radiotherapy has emerged to become one of the most commonly performed methods
used to treat cancer, the leading cause of death worldwide (World Health Organisation,
2014). A typical session involves high-intensity radiation beams being directed at a
tumour at various angles or control points from a rotating gantry. The mARC gantry
is capable of rotating around a patient’s body by 357 degrees partitioned into equally
spaced intervals, with the middle point of each interval referred to as a“control point”
(CP). At the head of the gantry, a multi-leaf collimator (MLC) is present to create a
variety of shapes for the beam to pass through. The shapes are created by forming an
opening in the MLC by the horizontal migration of left and right rows of metal leaves.
Modulated Arc Therapy (mARC) is a relatively new form of radiotherapy that aims to
successfully shrink and eliminate cancer cells, while also sparing the critical organs and
tissues that surround the tumour. mARC differs from other forms of radiotherapy, such
as intensity modulated radiation therapy (IMRT) in that sessions for mARC typically
last 2-3 minutes rather than 15-20 minutes. It differs from volumetric modulated
arc therapy (VMAT) in that the beam of radiation is active strictly at the desired
control points only. Furthermore, the MLC shape composition is static during the
movement to and from control points. These variations, although minor, alter the
underlying optimization problem quite significantly. The accuracy of a radiotherapy
plan is crucial, hence that the optimisation of it is quite widely studied. Optimisation
of VMAT plans, for example, has been recently considered by a number of authors. A
multicriteria optimisation has been very recently invesitiaged by Chen et al. (2014).
Men et al. (2010) published an ultra fast approach the planning. Heuristic approaches
to the treatment plan optimisation were presented by Akartunali and Mak (2012).
As mARC is a new form of treatment, limited studies on its optimisation have been
conducted thus far.



Figure 1: A photo of the machinery utilised during a typical radiotherapy session.
(Photo courtesy of the ALCC, Barwon Health)

Figure 2: A visual representation of the MLC machinery and functionality. (Photo
courtesy of the ALCC, Barwon Health)

2 Aims

In this project, we aim to study the treatment planning optimisation of mARC. To
achieve this, two mixed-integer linear programming models will be developed and com-
pared. Although each patient’s case is different, the fundamental objective of the model
is to maximize the dose delivered to the tumour whilst sparing nearby organs at risk
(OAR). The output of the optimisation will present the control points where radiation
beams are active and the intensity delivered from each. Results obtained will obey a
number of mARC machinery and prescribed dosage constraints. We will experiment
the MILPs on small-scale test problems to examine the differences in computation time
for each.



3 Model Formulation

Two models have been constructed to optimise mARC plans. The first is based on
the VMAT treatment planning optimisation from Akaratunali and Mak (2012) where
a MILP is presented. The second model breaks down a relatively complex variable
yki(`,r) into three separate variables, as seen in the VMAT model published by Sun

et al. (2013) and by Langer et al. (2001) for an IMRT model. The motivation for
constructing two models is to undertake an analysis on the computation times for each,
as minimising planning time is imperative.

3.1 Objective Functions

An optimisation model always contains an objective function to be maximised or min-
imised. In the case of radiotherapy, the objective functions to choose range from
minimising treatment time, maximising dose to tumour or minimising radiation de-
livered to OAR. For our project, we have adopted the objective of maximising the
number of voxels in a tumour that receive at least their desired dose.

3.2 Model 1 Variables and Parameters

We first define a number of variables and parameters which we use in our mathematical
model. We define:

• K, the index set of all control points;

• L = {(`, r) | `, r ∈ N , ` < r} be the feasible left and right-leaf pairs;

• M, the index set of the rows of an MLC, and m = |M|;

• N , the index set of assumed columns an MLC is partitioned into, and n = |N |;

• αk ∈ {0, 1} to be a binary variable with αk = 1 indicating radiation is delivered
in CP k;

• ᾱ, the maximum number of consecutive active CPs (the maximum alpha angle);

• β, the minimum size of separation of CPs in units of intervals;

• T the set of all voxels in Planning Target Volumes (PTV);

• O the set of all voxels in Organs At Risk (OAR);



• Uv the upper bound on radiation that is delivered to voxel v ∈ O;

• Lv the lower bound on radiation that should be delivered to voxel v ∈ T ;

• Dk
i,j,v a parameter which indicates the intensity per unit radiation delivered from

Row i and Column j of CP k to voxel v;

• yki(`,r) ∈ {0, 1} to be a decision variable with yki(`,r) = 1 if the bixels between, but

not including, columns ` and r in row i in Snapshot k are open and yki(`,r) = 0
otherwise;

• xv ∈ {0, 1} a decision variable with xv = 1 if voxel v ∈ T receives a desired dose
of d̄ or above and xv = 0 otherwise.

• dv the dose that voxel v receives; and

• zk a continuous decision variable representing the monitor units or fluence weights
for snapshot k.

3.3 Model 2 Variables and Parameters

Model 2 differs only slightly from Model 1 in they way how leaf positions are repre-
sented.

• tkij be a binary variable with tkij = 1 if bixel i, j in snapshot k is open, and tkij = 0
otherwise.

• `kij be a binary variable with `kij = 1 indicating the column j in row i of snapshot
k is closed by the left leaf and `kij = 0 otherwise; and

• rkij be a binary variable with rkij = 1 indicating the column j in row i of snapshot
k is closed by the right leaf and rkij = 0 otherwise.

These variables are inspried from Langer et al. 2001 for IMRT and in Sun et al. 2013
for VMAT.



3.4 The Optimisation Model

We start with the objective function.

max
∑
v∈T

xv (1)

3.4.1 mARC Machinery Constraints

We first present constraints for modelling the machinery restrictions of the mARC.
They ensure that the maximum alpha angle is no more than ᾱ units and that the
minimum separation between two active control points, β is observed.

ᾱ∑
δ=0

αk+δ ≤ ᾱ, ∀k = 1, . . . , |K| − ᾱ. (2)

for all k = 1, . . . , |K| − β − 1, if αk − αk+1 = 1, then

β∑
δ=1

(1− αk+δ) = β, ∀k = 1, . . . , |K| − β − 1. (3)

β∑
δ=1

(1− αk+δ) ≥ β (αk − αk+1), ∀k = 1, . . . , |K| − β − 1. (4)

These constraints are valid for both models.

3.4.2 MLC Leaf-pair Constraints

Models 1 and 2 require individual formulation of MLC leaf-pair constraints.

Model 1. ∑
(`,r)∈L

yki(`,r) = 1, ∀i ∈M, ∀k ∈ K. (5)

Model 2.

tkij + `kij + rkij = 1, ∀i ∈M, j ∈ N , k ∈ K (6)

rki,j ≤ rki,j+1, ∀i ∈M, j ∈ N \ {1} k ∈ K (7)

`ki,j ≥ `ki,j+1, ∀i ∈M, j ∈ N \ {1} k ∈ K (8)



3.4.3 MLC Interleaf Constraints

Next we require that the left leaf of any row can not collide with the right leaf of the
adjacent rows, and vice versa. To monitor this, we use the following constraints.

Model 1.

n+1∑
r̃=`+1

yki(`,r̃) +
∑̀
r̃=1

r̃−1∑
˜̀=0

yk
(i+1)(˜̀,r̃)

≤ 1

∀i ∈M \ {m}, ∀` ∈ L ∪ {0},∀k ∈ K.

(9)

r−1∑
˜̀=0

yk
i(˜̀,r)

+
n∑

˜̀=r

n+1∑
r̃=˜̀+1

yk
(i+1)(˜̀,r̃)

≤ 1

∀i ∈M \ {m}, ∀r ∈ L ∪ {n+ 1},∀k ∈ K.

(10)

Model 2.

rki,j + lki+1,j ≤ 1, ,∀j ∈ J, k ∈ K, ∀i ∈M \ {1} (11)

rki+1,j + lki,j ≤ 1, ,∀j ∈ J, k ∈ K∀i ∈M \ {1} (12)

These constraints are presented in Langer et al. 2001 for IMRT treatment planning
optimisation.

3.4.4 ‘Linking’ constraints

To tie the MLC aperture variables and the fluence weight variables at each control
point with the α variables, we require that:

1. If αk = 0, then zk = 0, for all k ∈ K.

2. For each k = 1, . . . , |K| − 1, if αk = αk+1 = 1, then yki(`,r) = yk+1
i(`,r), for all i ∈ M,

j ∈ N ; and zk = zk+1 for model 1.

3. For each k = 1, . . . , |K| − 1, if αk = αk+1 = 1, then tkij = tk+1
ij , for all i ∈ M,

j ∈ N ; and zk = zk+1 for model 2.

To acheive this, we introduce a new variable sk. Let sk be binary variable indicating
whether αk = αk+1 = 1 (i.e., two consecutive control points are part of an opening and



hence should be consistent, sk = 1) or not (sk = 0).

αk + αk+1 − 1 ≤ sk, ∀k ∈ K

αk ≥ sk, ∀k ∈ K

αk+1 ≥ sk, ∀k ∈ K

sk − 1 ≤ yki(`,r) − y
k+1
i(`,r) ≤ 1− sk, ∀k ∈ K, i ∈M, j ∈ N

W̄(sk − 1) ≤ zk − zk+1 ≤ W̄(1− sk), ∀k ∈ K

Note that for Model 2: yki(`,r) is replaced by tkij.

3.4.5 Dose Limit Constraints

To ensure that the lower and upper dosage limits are satisfied, we have that:

dv ≥ Lv v ∈ Vt (13)

dv ≤ Uv v ∈ V (14)

dv − Lv ≥ (d̄− Lv)xv v ∈ Vt (15)

3.4.6 Dose Calculation

The dose received by a voxel, dv for all v ∈ V is dependent on the MU delivered and
the shape of the MLC at each snapshot. It’s value is calculated as follows:

dv =
∑
k∈K

∑
i∈M

∑
j∈N

zk ×Dk
ijv ×

∑
(`,r)∈L

yki(`,r)


(16)

Note again, for model 2: yki(`,r) is replaced by tkij for the dosage calculation.

To linearise the above, we introduce a variable, z̄kij to represent the MU amount,
(or fluenceweight) for beamlet (i, j) from snapshot k. Hence producing the following
linear calculation fo dv.



dv =
∑
k∈K

∑
i∈M

∑
j∈N

(
z̄kij ×Dk

ijv

)
(17)

Lastly, to finalise the linearisation we have the following four constraints:

Model 1.

z̄kij ≤ M̄
∑

(`,r)∈L,,`<j<r

yki(`,r) (18)

z̄kij ≤ zk (19)

z̄kij ≥ M̄(−1 +
∑

(`,r)∈L,`<j<r

yki(`,r) + zk) (20)

z̄kij ≥ 0 (21)

Model 2.
z̄kij ≤ M̄tkij (22)

z̄kij ≤ zk (23)

z̄kij ≥ M̄(−1 + tkij) + zk (24)

z̄kij ≥ 0 (25)

4 Numerical Results

Here we present the numerical results obtained from our experiment. The models were
both tested on 4 problem instances. Three simple instances (a, b and c) containing
4 snapshots and one larger instance with 90 snapshots (d). The data instances were
randomly generated using a random problem generate code written in C++. Fig 3
shows MLC shapes as determined by a random instance. Table 1 presents the values
of some decision variables obtained from one of the small sets, data instance (b). The
parameters for the data sets are as follows:
(a, b, c): Snapshots = 4; Rows = 4; Columns = 4; w = h = d = 4; ᾱ=2; β=1.
(d): Snapshots = 90; Rows = 6; Columns = 6; w = h = d = 6; ᾱ=3; β=2.

Table 1: The objective value, ak and zk values for a 4 snapshot data set (instance b).
Objective 3
ak [1, 0, 1, 0]
zk [1.3946, 0, 1.427, 0]



Figure 3: The optimised MLC shapes for each snapshot in a random 4 snapshot sample.

Instance No. Model 1 time (mins) Model 2 time (mins)

(a) 00:09:97 00:02:52
(b) 00:14:43 00:01:99
(c) 00:14:79 00:03:77
(d) 46:47:67 05:32:44

Table 2: A comparison of completion time among the two models for the 4 instances.

As suggested by the results in Table 2, the alteration of the original MLC shape
variable, yki(`,r) to the three variables in Model 2 has resulted in significanty shorter
computation time. Given that one of the main advantages of mARC is the extremely
fast sessions, it is ideal to aim for quick treatment planning too.

5 Conclusion

Optimisation models were written to find optimal control points, intensities and MLC
shapes that obey machinery and dosage constraints. By creating two models, we could
conduct an analysis as to which is the most desirable time wise.

5.1 Future Direction

As this project is continued as an Honours project in 2014 at Deakin University, pro-
jected direction for the year includes further study of relaxations, solution methods
and advanced programming. Although we reduced computation time by constructing
Model 2 in this research, further implementations will be investigated to continue to
shorten time. Finally, I hope to test the optimisation model on some real-life large-
scale problems.
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