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Abstract

The collective spreading of cell populations is often described using continuum diffu-
sion models. Most previous studies use linear diffusion models to describe collective
cell migration while some prefer to use a degenerate nonlinear diffusion model as it pro-
vides a better match to experimental data and supports sharp-fronted solutions. There
is no guidance in the cell modelling literature with regard to which approach is more
suitable for representing the collective spreading of cell populations under which cir-
cumstances. Here, a generalised lattice-based exclusion process is used to simulate the
collective motion of a populations of interacting agents of various cell length, in one di-
mension. Rather than relying on model calibration, the relationship between the discrete
motility mechanisms and PDE models is analysed by considering the continuum limit
of the processes. Results confirm that “round” agents occupying a single lattice site,
obey the linear diffusion equation whereas elongated agents, occupying more than one
lattice site, obey a degenerate nonlinear diffusion equation related to the porous medium
equation (PME) where the exponent in the nonlinear diffusivity function is dependent
upon the length of the agents. Furthermore, the validity of the assumption that the PME
solutions are totally differentiable was analysed by comparing discrete and continuum
models at steady state. Initial results suggest that the subsequent use of a truncated Tay-
lor series expansion to relate the occupancy of lattice sites was the main cause of the
discrepancy between the discrete and continuum models for elongated agents.



1 Introduction

1.1 Biological Motivation
Cell motility plays a crucial role in many biological processes in the human body, including
during tissue regeneration and embryological development. The collective migration of tis-
sue cells, such as fibroblasts, is of particular importance in the applications such as wound
healing [1], biomaterial development [2] and cancer biology [3]. Although many cell types
deform during movement [4] fibroblasts do not, instead “gliding” over their substrate. When
released from tissue and placed in culture they migrate randomly and display contact inhibi-
tion [4], a physical process that prohibits cells in contact from continued movement over the
surface of the other [5]. These characteristic properties of fibroblastic cell motility define the
PDE models used to describe collective cell spreading.

Most existing models neglect to take into account cell morphology [6–13], describing
the motility of perfectly round or spherical cells. However, many of the applications which
require such models involve fibroblastic cells with an elongated form. The population of
human peritoneal mesothelial cells in [1], used in wound healing applications, clearly falls
within this category. Furthermore, Smith, Marra and Marshall [14] showed that cells in
live melanoma tumours undergo changes in shape from round to more elongated, thereby
affecting their motility. Such examples illustrate the importance of developing models which
provide a link between motility and morphology. This project aims to address that need by
exploring models of collective cell spreading for cells of varying shape.

1.2 Modelling Collective Cell Spreading
Collective cell migration is most commonly modelled through continuum models based on
linear Fickian diffusion, resulting in cell density descriptions of the form,

∂C

∂t
= D0∇2C , (1)

[1,15,17–19] where C is the probability of a cell being located at a certain position (x, y, z)
at time t. The linear diffusion equation is one of the most commonly used partial differential
equations (PDEs) in applied mathematics and is considered the single most important proto-
type for parabolic PDEs, finding applications in a wide range of fields including physics and
biology. A more generalised nonlinear model,

∂C

∂t
= D0∇ · [D(C)∇C] , (2)



with D(C) = Cn and n > 0, has also been suggested by several authors [1, 16–18, 20] to
describe collective cell migration. This parabolic differential equation is known as the porous
medium equation (PME) [21]. It is degenerate as D(0) = 0 and thus D(C) = Cn does not
satisfy the condition for classical diffusion equations, D(C) > 0 [22]. The PME is less well
known than Eq. (1) and more difficult to deal with, given its non-linearity, with applications
including fluid flow, heat transfer and diffusion [21]. Several ecological and biological uses
have also arisen such as the representation of population pressure in biological systems [23].

Although numerous examples exist where the PME is applied to cell motility problems,
there is little coherence between approaches. Some authors favour the use of the PME as
the solutions often have distinct boundaries known as interfaces [21], thought to represent
sharp-fronted cell density profiles [1]. Sherrat and Murray [17] and Sengers et al [18] justify
the use of the non-linear diffusion equation through the fit to experimental data. No widely
accepted mathematical or physical justification yet exists for the appropriate use of the PME
and choice of the exponent, n. This report explores the approach taken by Simpson, Baker
and McCue [16], where the use of the PME to describe the collective spreading of cells
of varying aspect ratio is justified by considering the continuum limit of discrete motility
mechanisms.

Collective cell spreading can be represented through the use of discrete interacting ran-
dom walk models known as exclusion processes [16]. Simulations of these lattice-based
random walk models provide a microscopic set of data equivalent to a photograph of the
distribution of cells. The average of many such microscopic realisations provides a contin-
uous description of the system which can be related to the solution of a PDE. Most existing
applications of exclusion process models consider each cell to be represented by a single
agent occupying a single lattice site [6–13]. Given the uniform nature of such lattices, these
models are only appropriate for perfectly “round” cells where the longitudinal and trans-
verse dimensions are equal. Yet, many of the cells relevant in wound healing applications
and cancer biology are elongated or rod-shaped.

In Sec. 2 the collective motion of an initially adjacent population of cells is considered.
Exclusion process models are developed in Sec. 2.1 for populations of cells with various
lengths. Note that since the models are in 1D it is implied that the cells have a unit “thick-
ness” with length denoted by L. The exclusion process models are simulated on a lattices
with spacing given by ∆. Each lattice site is indexed i where i ∈ N, and each site has a
position x = i∆. The lattice’s length is defined by the x coordinate where 1 ≤ x ≤ xmax. A
population of identical interacting agents is considered in which all agents occupy a number
of lattice sites given by their length, L. For example, an agent with L = 2 may occupy
the lattice sites i and i + 1 as shown in Fig. 1. PDE models are developed in Sec. 2.2 by
considering the continuum limit of the discrete models, providing a motivation for the use



of the PME. The discrete models and solutions to the PDEs are compared in Sec. 2.3.
The use of the Taylor series in developing the continuum models in Sec. 2.2 is analysed

in Sec. 3 by considering the steady state of the spreading agent population. Steady state
solutions to the continuum model are presented in Sec. 3.1 while the steady state exclusion
process model is discussed in Sec. 3.2. The two approaches are compared in Sec. 3.3 and
the effect of the Taylor series expansion is discussed.

Although modelling collective cell migration in one dimension may appear trivial, such
models still have realistic applications. Fibroblast movement in tissue culture is often seen
to be focused along grooves [4] which can in the simplest case be modelled by a one dimen-
sional lattice.

2 Collective motion of an initially contiguous population of
agents

2.1 Discrete simulations
To simulate the collective spreading of cells, a random walk model was created for agents
with L = 1, 2, 3 and 4. Each simulation begins with a contiguous population of N identical
agents occupying the central 40 lattice sites where the number of lattice sites occupied by a
single agent depends upon L. Fig. 1 illustrates the number of sites occupied by agents with
L = 1 and 2 respectively. Initially, the agent with L = 1 occupies lattice site i whilst the
agent with L = 2 occupies i and i+ 1.

A random sequential update method is applied where for each time step, of duration

i− 1 i i+ 1 i+ 2

(a) t

i− 1 i i+ 1 i+ 2

i− 1 i i+ 1 i+ 2

(b) t+ τ

i− 1 i i+ 1 i+ 2

Figure 1: Schematic of the lattice positions occupied by an agents with L = 1 and 2. (a) Agents
positions at time t before the motility event. (b) New agent positions after one time step of duration
τ , given the opportunity to move right, unhindered by other agents.
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Figure 2: Simulations of agent motility showing the horizontal positions of agents with L = 1 along
a lattice of length 200 for t = 0, 100 and 500. Each plot has a height of 20 indicating the number of
identically prepared realisations, M where each new row shows the mth realisation. (a) Simulations
begin with a contiguous population of 40 agents per row, occupying the centre of the lattice. (b)-(c)
Simulation results are given at t = 100 and 500 respectively for Pm = ∆ = τ = 1.

τ , N agents are selected and given the opportunity to move in the positive or negative x
direction. The direction is determined at random for each agent by generating a random
value from the standard uniform distribution, pd. Agents attempt to move in the negative x
direction when pd < 0.5 and in the positive x direction when pd ≥ 0.5. When chosen, an
agent attempts to move a distance ∆, with probability Pm ∈ [0, 1] in the time interval τ . All
simulations are conducted with Pm = ∆ = τ = 1. Fig. 1 shows the positions of agents
with L = 1 and 2 after one time step, given the opportunity to move to the right. Due to
the contact inhibition of cells, the motility event is aborted when the target site is occupied.
Thus, the initial configuration of the system yields only two possible motility events. Either
the agent on the left boundary moves left or the agent on the right boundary moves to the
right. Since the lattices used for the simulations are long enough that the agents do not reach
the boundaries in the simulated time-frames, they can essentially be considered infinite.

Fig. 2 shows a set of simulations for a lattice 1 ≤ x ≤ 200 occupied by agents with



L = 1. Results are shown for 20 independent 1D lattices, stacked vertically, to give the
appearance of two dimensions. Thus each new “row” shows the results of a separate micro-
scopic realisation, m, given the same length of time and initial conditions. The total number
of realisations for each set of simulations is given by M = 20. All lattice sites between 81
and 220 were initially occupied as shown in (a). The system was allowed to evolve, resulting
in a spreading of the population over time, as would be expected from a population of cells.

From Fig. 2 it is evident that each microscopic realisation results in a different distribu-
tion of agents. In order to obtain any meaningful results describing the collective motion of
the cells, a smooth distribution of the occupancy of sites is required. Suppose Cm(i) is the
occupancy of site i during the mth realisation, where Cm(i) = 0 if the lattice site is vacant
and Cm(i) = 1 if it is occupied. For M realisations, starting from the same initial condition,
the average occupancy of a site is,

〈C(x, t)〉 =
1

M

M∑
m=1

Cm(i) . (3)

The average occupancy, 〈C(x, t)〉, describes the probability of position x being occupied
after a time t. This raises the question; how many realisations are required such that a
continuous probability distribution is achieved? Clearly one realisation will just give a binary
plot, from which it would be impossible to deduce anything by inspecting the resulting
density profile. Fig. 3 shows the smoothing out of the density profiles for agents with L = 1
and L = 4 as the number of realisations is increased. For M = 50 the density data is highly
unreliable, displaying pronounced fluctuations. This effect is particularly noticeable near the
leading edges of the profile as there are very few agents in this region. It is clear that a large
number of simulations, M > 5000, is required to achieve a continuous distribution. The
difference between M = 5000 and M = 10000 is difficult to see at this scale although in
(c) and (d) it would appear as though the average density profile for M = 10000 is slightly
smoother. Further increasing M would yield a smoother distribution, however, the visual
improvement would not be significant. Hence, comparisons of the averaged profile and
solutions in Sec. 2.3 were conducted using M = 8000.

While it is possible to fit a linear diffusion model to the data [17], as each density profile
remains symmetric about the central lattice position, this approach fails to explain the dif-
ference in motility or address both the increased spread and change in shape of the profiles.
Since the agent density profiles are quite different, see Figs. 3 (a) and (b), this model cali-
bration approach would lead to different estimates of the free cell diffusivity, D0, for every
value of L. Rather than using this calibration procedure, in Sec. 2.2 different values of L are
related to different diffusion mechanisms with nonlinear diffusivity functions, D(C), while
D0 remains the same.



100 200 300
0

1

x
100 200 300
0

1

x

240 260 280
0

0.2

x
240 260 280
0

0.2

x

<C(x,t)><C(x,t)>

<C(x,t)><C(x,t)>

(a) (b)

(c) (d)

L=4  t=300

L=4  t=300

L=1  t=300

L=1  t=300

Figure 3: Convergence of the mean agent occupancy profiles obtained using Eq. (3) for a lattice
of length 400 with sites 181 ≤ x ≤ 220 initially occupied. All simulations were performed until
t = 300 for Pm = ∆ = τ = 1. Four profiles are shown with M = 50, 500, 5000 and 10000 shown
in blue, green, red and black, respectively. In (a) results are provided for a lattice occupied by agents
with L = 1 whereas the lattice corresponding to (b) is occupied by agents with L = 4. The details of
the probability profiles in the tail regions between 240 ≤ x ≤ 280 are shown in (c) and (d).

2.2 Continuum models
In Sec. 2.1 the discrete mechanism was connected to a continuous expression by averaging
over many statistically identical realisations to obtain 〈Ci〉 ∈ [0, 1]. This average represented
the probability of an agent occupying site i. To develop equations governing the motility
for different lengths, discrete conservation statements are constructed describing δ〈Ci〉, the
change in average occupancy of a site i during the interval from t to t + τ . Four possible



motility events must be considered in order to form this statement; movement from the left or
right into site i and movement to the left or right out of site i. When constructing the discrete
conservation statements it is assumed that the occupancy of the lattice sites is independent.
Although this assumption seems counter-intuitive, it is the foundation of many mean field
models in the exclusion process literature [7, 8, 10, 16].

For a population of agents with L = 1 the discrete conservation statement is,

δ〈Ci〉 =
Pm
2

[〈Ci+1〉(1− 〈Ci〉) + 〈Ci−1〉(1− 〈Ci〉)− 〈Ci〉(1− 〈Ci+1〉)

−〈Ci〉(1− 〈Ci−1〉)] . (4)

where Pm/2 is the probability per time step that an agent will move in a given direction,
〈Ci±β〉 is the probability of site i±β being occupied and (1− 〈Ci±β〉) is the probability that
site i±β is vacant. The four possible motility events are represented by the product of these
probabilities, where the sign indicates whether the corresponding motility event increases or
decreases the occupancy of site i. The first term on the right of Eq. (4), 〈Ci+1〉(1 − 〈Ci〉),
therefore represents the change in average occupancy of site i caused by an agent moving
from site i+ 1 to i. Simplifying Eq. (4) and dividing by the time increment, τ , results in,

δ〈Ci〉
τ

=
Pm
2τ

[〈Ci+1〉 − 2〈Ci〉+ 〈Ci−1〉] . (5)

Taking the limit as ∆ → 0 and τ → 0 simultaneously, with discrete values of 〈Ci〉 written
in terms of a continuous variable C(x, t) allows the discrete conservation statement to be
transformed into a PDE model. To obtain the appropriate relationship, terms in Eq. (5) are
expanded in a Taylor series about i according to,

Ci+a = Ci + (a∆)
∂Ci
∂x

+
(a∆)2

2

∂2Ci
∂2x

+O
(
∆3
)
, (6)

where a ∈ Z. This truncation follows from the fact that terms of O (∆3) and higher are
negligible. Taking the limits as ∆ → 0 and τ → 0 simultaneously, with (∆2/τ) held
constant, results in the expression,

∂C

∂t
=

∆2Pm
2τ

∂2C

∂x2
(7)

which is the linear diffusion equation with constant diffusivity,

D0 =
Pm
2

lim
∆,τ→0

(
∆2

τ

)
. (8)



The same process is repeated for agents with L > 1. Firstly, the case for agents with L = 2
is considered. Following the same process as above, again making the assumption that the
occupancy status of adjacent sites is independent, the conservation statement may be written
as,

δ〈Ci〉 =
Pm
2

[(1− 〈Ci〉)〈Ci+1〉〈Ci+2〉+ (1− 〈Ci〉)〈Ci−1〉〈Ci−2〉

− (1− 〈Ci+2〉)〈Ci〉〈Ci+1〉 − (1− 〈Ci−2〉)〈Ci〉〈Ci−1〉] . (9)

Since each agent now occupies two lattice sites, see Fig. 1(b), each term in the sum on
the right is now the product of three probabilities of agent occupancy. The term:(1 −
〈Ci〉)〈Ci+1〉〈Ci+2〉, therefore represents the probability that an agent occupying sites i + 1
and i+ 2 will move to the left into sites i and i+ 1. Simplifying and dividing by τ gives,

δ〈Ci〉
τ

=
Pm
2τ

[〈Ci+1〉〈Ci+2〉+ 〈Ci−1〉〈Ci−2〉 − 〈Ci〉〈Ci+1〉 − 〈Ci〉〈Ci−1〉] . (10)

Again, the Taylor series expansion in Eq. (6) is used to expand terms on the right of Eq.
(10). Taking the limits as ∆ → 0 and τ → 0 with (∆2/τ) held constant and replacing 〈Ci〉
with C(x, t) gives,

∂C

∂t
=

2∆2Pm
τ

[
C
∂2C

∂x2
+

(
∂C

∂x

)2
]
, (11)

which may be rewritten as a PME of the form,

∂C

∂t
=

∆2Pm
2τ

∂

∂x

[
4C

∂C

∂x

]
. (12)

This time the diffusivity term has both the linear term, D0, given by (8) and a non-linear
diffusivity function, D(C) = 4C. The same derivations for agents with L = 3 and 4 also
results in PMEs with free cell diffusivities given by (8), and nonlinear diffusivity functions
D(C) = 9C2 and D(C) = 16C3 respectively. The general form of the PDE, for all L, is

∂C

∂t
= D0

∂

∂x

[
D(C)

∂C

∂x

]
, (13)

D(C) = L2CL−1 , (14)

where Eq. (13) is a PME with n = L− 1.



2.3 Continuum-discrete comparison
To test how the PDE model predicts the movement of a population of agents, the agent
density profiles are compared to solutions of Eq. (13). The initial condition, describing the
population of contiguous agents in the centre of the lattice, is

C(x, 0) = H(x− xL)− H(x− xR) , (15)

where xL and xR represent the left and right boundaries of the initial agent population and
H is the Heaviside function. When xL ≤ x ≤ xR, H(x − xL) = 1 and H(x − xR) = 0,
giving C(x, 0) = 1. The boundary values are chosen to match the discrete simulations,
therefore (xL, xR) = (181, 220), (181, 220), (181, 119) and (181, 220) for L = 1, 2, 3 and 4
respectively.

For L = 1 the collective migration of agents is described by the linear diffusion equation
(Eq. (7)) with initial condition (15). Applying the Fourier transform, solving the resulting
ODE and using convolution in conjunction with the inverse transform results in the exact
solution,

C(x, t) =
1

2

[
erf

(
x− xL
2
√
D0t

)
− erf

(
x− xR
2
√
D0t

)]
. (16)

For agents with L > 1, where the motility is described by a non-linear PDE, Eq. (13),
solutions must be found numerically. Applying a first order finite difference approximation
to Eq. (13) with constant grid spacing δx and constant time steps δt gives,

Ck+1
i − pCi

δt
=
D0

δx

[
D(Ci+ 1

2
)k
∂C

∂x

k+1
∣∣∣∣
i+ 1

2

−D(Ci− 1
2
)k
∂C

∂x

k+1
∣∣∣∣
i− 1

2

]
, (17)

where Ck
i is known value at the next time step, Ck+1

i is unknown at the next time step and
pCi is known value at the previous time step. D(C) and ∂C/∂x are approximated midway
between lattice points, as shown in Fig. 4. Thus,

D(Ci± 1
2
) =

D(Ci) +D(Ci±1)

2
, (18)

allowing Eq. (13) to be approximated using,

Ck+1
i − pCi

δt
=

D0

2(δx)2

[
(D(Ci+1) +D(Ci))

k (Ci+1 − Ci)k+1

− (D(Ci) +D(Ci−1))k (Ci − Ci−1)k+1
]
. (19)
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Figure 4: 1D mesh used to approximateD(C) and ∂C/∂x at points midway between the lattice sites.

Each location on the lattice results in an equation of the form,

a(Ck
i−1)Ck+1

i−1 + b(Ck
i )Ck+1

i + c(Ck
i+1)Ck+1

i−1 = d(pCi) . (20)

The solution can therefore be obtained by solving the nonlinear algebraic system ACm+1 =
d, where A is the tridiagonal matrix containing the coefficients a, b and c, and d is the
right hand side vector containing entries of the form (−pCi/δt). Picard linearisation, with
5 iterations per time-step, is used to approximate a, b, c and d for each time step with the
approximated linear tridiagonal system solved via the Thomas algorithm.

Comparison of the discrete density profiles in Fig. 5 indicates a pronounced difference
in the evolution of the averaged agent density profiles with changing L. The agent density
near the centre of the lattice (x = 200) decreases faster as L increases. Although more rapid
spreading of large agents seems counter-intuitive, the observation can be easily justified as
the movement of larger agents will affect the population density over a greater portion of the
lattice relative to the same motility events acting on a population of smaller agents. Consider
the difference between the attempted movement in the positive x direction of agents with
L = 1 and L = 4. The movement of the agent with L = 1, initially at site i, will alter the
density of sites i and i+ 1. In contrast, an agent with L = 4, initially occupying sites i− 3,
i − 2, i − 1 and i, will alter the density at sites i + 1 and i − 3, which are much further
apart. Although this example illustrates why the density profiles evolve more rapidly with
increasing values of L, it does not provide a physical explanation for why cells of greater
length would spread more rapidly. Given the dimensionless implementation of the discrete
and continuum models, the difference in the evolution of density profiles cannot necessarily
be interpreted as “faster” or “slower” in a physical sense.

Fig. 5(a) shows that there is an excellent match between the simulation data for agents
with L = 1 and the solution to Eq. (13), as has been demonstrated previously [7]. For L > 1
the solutions to Eqs. (8), (13) and (14) also appear to match the simulation data reasonably
well, especially near the centre of the lattice. However, the match at the boundary of the
spreading agent population for L > 1 is fairly poor, as the simulation data is smooth whereas
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Figure 5: Averaged agent density data for a series of simulations for L = 1, 2, 3, 4 respectively.
All sites with 181 ≤ x ≤ 220, 181 ≤ x ≤ 220, 181 ≤ x ≤ 219, 181 ≤ x ≤ 220 are initially
occupied. In each case the agent occupancy, 〈C(x, t)〉 is shown in blue (solid) at t = 0, 100, 500
averaged over M = 8000 identically prepared realisations. The simulation profiles are compared
with the numerically obtained solution of Eq. (13) shown in red (dotted), with the arrows indicating
the direction of increasing time.

the solution of the PME (13) is sharp-fronted. This mismatch becomes more pronounced
with increasing agent length.

At least two explanations may be provided for the the discrepancy between the contin-
uum and discrete profiles [16] at the peripheries of the spreading agent population. The first
stems from the use of the truncated Taylor series expansion, Eq. (6), to relate the occupancy
of lattice sites. In doing so it was assumed that the corresponding solution, C(x, t) would



be sufficiently differentiable so that the density profile could be expanded via the Taylor
series. Although the solution of the PDE model is differentiable everywhere for L = 1,
the sharp-fronted solutions of the degenerate nonlinear diffusion equation [21] which result
when L > 1, are not. Hence this would appear to be a plausible explanation for the discrep-
ancy between the continuum and discrete models. The effect of the Taylor series expansion
upon the mismatch between the models is further investigated in Sec. 3.

The second possible cause is the failure of the independence assumptions upon which the
discrete conservation statements, Eqs.(4) and (9), are based. Although this assumption, made
by others [7, 8, 10, 16], allows the products of the occupancy probabilities to be interpreted
as a net transition probability, it becomes unreasonable when L > 1. Consider the difference
between agents with L = 1 and L = 4. The agent with L = 1 initially occupies site i
whereas the agent with L = 4 occupies i − 3, i − 2, i − 1 and i. If these agents attempt
to move in the positive x direction the discrete conservation statement requires that, when
averaged over many identically prepared realisations, for L = 1 the occupancy of sites i and
i + 1 are independent whilst for L = 4 the occupancy of sites i − 3, i − 2, i − 1, i and
i+ 1 are independent. Since there are many more ways in which an agents with L = 4 may
occupy these sites over a large number of realisations this independence assumption is less
satisfactory for L = 4 than for L = 1. In general, the assumption appears to become less
appropriate as L increases and may therefore contribute to the increased discrepancy as L
increases. Work is being done to understand how to relax the independence assumption for
spatially uniform problems [24], however further investigation is required to understand how
this assumption may be relaxed.

3 Steady state analysis

3.1 Steady state solutions
Completely smooth solutions to Eqs. (13) and (14) are sought for L > 1 in order to deter-
mine whether the Taylor series expansion, Eq. (6), is the cause of the discrepancy noted at
the boundaries of the spreading agent population. Such solutions are achieved at the steady
state of a cell population’s collective spreading, as demonstrated by the smoothness of the
steady state profiles in Fig. 6. The steady state solutions of Eqs. (13) and (14) are obtained



by setting the right hand side of Eq. (13) equal to zero and solving by direct integration,

0 = D0
∂

∂x

[
D(C)

∂C

∂x

]
(21)∫

a dx =

∫
D(C) dC . (22)

Applying Eq. (14), the resulting steady state distribution is,

C(x) = (a2x+ b2)
1
L , (23)

where a2 = a/L and b2 = b/L. Since a spreading agent population, regardless of its initial
distribution, will reach the boundaries of a lattice of any length given a long enough time,
it is necessary to enforce boundary conditions. This allows the constants a2 and b2 to be
determined. If C(0) = 1 and C(xmax) = d, then b2 = 1 and a2 = 1/xmax

(
dL − 1

)
.

For the solutions and random walk simulations presented the boundary conditions,

C(0) = 1 (24)
C(xmax) = 0.2 , (25)

are applied, whilst the initial condition considered is,

C(x, 0) = 0.6 . (26)

To determine when the steady state of the spreading agent population is reached, solutions
to the IBVP given by Eqs. (13), (24), (25) and (26), are found for a range of times and
compared to the steady state solutions. The general solution for L = 1 can be solved for
exactly, giving,

C(x, t) = 1− 8

10xmax
x+

2

π

∞∑
n=1

4

10n

(
(−1)n+1 − 1

)
e(n2π2D0t/x2max) sin

(
nπ

xmax
x

)
. (27)

When L > 1 the solutions are found numerically as described in Sec. 2.3, but with the initial
and boundary conditions, Eqs. (24)-(26). Although the initial distribution has no bearing
upon the steady state solution, it will affect the numerical solutions prior to steady state as
well as impacting the rate at which solutions converge to steady state. The longer the lattice
the greater the time-frame required to reach steady state.

As illustrated in Fig. 6, for a lattice with xmax = 100, with boundary conditions and
initial conditions (24)-(26), a steady state of the spreading agent population is reached when
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Figure 6: Comparison of the steady state agent density profiles (red dotted) with density profiles
at t = 500, 2000, 8000 and 10000 (blue, green, cyan and black respectively) for a lattice of length
100. Exact solutions to (13) and (24)-(26) are displayed in (a) and (b) for L = 1 while numerical
solutions for L = 3 are shown in (c) and (d). (b) and (c) are magnified views of sections of (a) and
(c) respectively.

t > 8000. Even at the high resolution depicted in Figs. 6(b) and 6(d) no difference can be
determined between the solution when t = 8000 (cyan) and t = 10000 (black). For L = 3,
the solution at t = 10000 does not match the steady state solution as well as for L = 1.
This is because exact solutions are shown for L = 1 while for L = 3 numerical solutions,
obtained using the method described in Sec. 2.3, are shown. A greater number of iterations
per time-step during the Picard linearisation would have yielded a more accurate match but
since the solutions at t = 8000 and t = 10000 were indistinguishable it was apparent that a
steady state had been reached.



3.2 Discrete steady state simulations
To determine whether each steady state solution, Eq. (23), matches the steady state of the
corresponding spreading agent population, the exclusion process model described in Sec.
2.1 must be suitably modified. While the steady state of a spreading agent population has
no real physical applications, it is expected to allow the validity of the continuum models
presented in Sec. 2.2 to be analysed.

Rather than beginning with a contiguous population of agents in the centre of the lattice,
as in Sec. 2.1, the steady state simulations begin with the uniform initial distribution, Eq.
(26). Thus, the entire lattice is initially occupied with probability 0.6 i.e. each site has a 60%
chance of being occupied by an agent. A less populated initial lattice requires more time
steps to reach the steady state while a fully populated initial lattice does not allow enough
motility events to be assessed.

To enforce the boundary conditions, (24) and (25), a further condition must be intro-
duced to the random walk simulations. After each time step the occupancy of the left hand
boundary position, i = 1, is assessed. If site 1 is found to be unoccupied it is occupied
with another agent. The right hand side boundary condition is enforced in a similar manner
except that for each time step, a random number, pR, is selected from the standard uniform
distribution. If pR ≤ 0.2 then site i = xmax must be occupied whereas if pR > 0.2 the site
will be vacated.

Since agents may attempt to move beyond the lattice boundaries during the random walk
simulations, further boundary conditions must be enforced during each time step. Here a
choice needs to be made between reflecting and non-reflecting boundary conditions. Reflect-
ing boundary conditions consider the lattice bounds to be impenetrable ‘walls’, thus when
an agent occupies sites 1 or xmax, and the exclusion process model selects an attempted
movement to a site beyond the lattice, the motility event is aborted. This introduces a motil-
ity bias at the lattice bounds. In contrast, non-reflecting boundary conditions would allow
agents to move beyond the lattice, resulting in fractions of agents with L > 1 occupying the
boundaries.

The choice between reflecting and non-reflecting boundaries impacts the way in which
boundary conditions (24) and (25) are implemented. Consider the case for reflective bound-
aries. For agents with L > 1, when C(0) = 1 is enforced sites 1 to L must be occupied.
Thus, if there is another agent occupying any sites from 2 toL it must be removed completely
to avoid introducing fractions of agents onto the lattice. Fig. 7 demonstrates how enforcing
these boundary conditions for L = 2 will introduce an artificial vacancy at site i = 2. Imple-
menting the boundary conditions in this way therefore results in pronounced fluctuations in
occupancy near the lattice boundaries when L > 1. Similarly for the boundary condition at
site xmax, removing an agent with L > 1 when pR > 0.2 results in a decrease in occupancy
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Figure 7: Schematic of the lattice positions occupied after enforcing Eq. (24) for a lattice with reflec-
tive boundaries, when L = 2. The site in gray is vacated to enforce the boundary condition, causing
a marked decrease in the occupancy of this site over many trials. (a) Agent position before imple-
menting the boundary condition. (b) Positions occupied by new agent after enforcing the boundary
condition, Eq .(24), with the vacated site shown in gray.

for sites xmax − L + 1 to xmax − 1. The vacancies caused by this approach yield too many
fluctuations to accurately compare the simulations and steady state solutions, as is evident
from Fig. 8(b). Simulations with non-reflecting boundary conditions are instead considered.
Since non-reflecting boundary conditions allow agents to move beyond the lattice, imple-
menting conditions (24) and (25) for L > 1 does not require a previously occupied site to
be vacated. Instead, fractions of agents may now occupy the lattice at the boundaries avoid-
ing the marked fluctuations at the boundaries. However, enforcing non-reflective boundaries
introduces new difficulties. If, during the random walk simulations, only the lattice sites
are considered, then when an agent moves beyond the lattice at either end it cannot return
onto the lattice. This results in a marked decrease in lattice occupancy for sites close to
the boundaries, despite the reintroduction of agents after each time-step, as illustrated by
the green plots in Fig. 8. In order simulate the collective motion of the agents, without
introducing a bias at either lattice boundary, ghost sites must be introduced at either end.
Boundary conditions (24) and (24) are applied not only to the boundary sites but also to the
ghost sites beyond the lattice bounds. The introduction of these ghost nodes allows agents
to move beyond the lattice bounds during a time-step but also allows agents to move back
onto the lattice. Two difficulties now arise with regards to the use of the ghost sites; how
many are necessary to obtain a smooth distribution? and what conditions should be enforced
for the outermost ghost sites? Again, using non-reflecting conditions at the boundary of the
ghost nodes results in agents moving off but not back onto the ghost lattice while reflecting
boundaries still introduce some fluctuations. For the following simulations the bounds of the
ghost sites are considered to be fixed while the lattice bounds are non-reflecting. At least 4L
ghost sites must be considered beyond each lattice bound to avoid the fluctuations evident in
Fig. 8(b).

Enforcing the right hand boundary condition for L > 1 requires yet more consideration.
While the left hand boundary condition can be simply enforced by testing the occupancy
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Figure 8: Comparison of the discrete steady state simulations performed without ghost nodes and the
steady state solutions (red dotted) for agent populations with L = 1 and 2, in (a) and (b) respectively.
Discrete simulations were conducted with M = 10000, t = 9000, C(x, 0) = 0.6 and boundary
conditions (24) and (25). Simulations with reflecting boundary conditions are shown in blue while
simulations with non-reflecting conditions are shown in green.

and introducing an agent to fill only the first site if it is empty, the same simplistic approach
can’t be used for the right hand boundary. If pR > 0.2 and the right hand boundary position
is occupied then the entire agent must be removed. Thus for agents with L > 1, sites
xmax−L+ 1 to xmax− 1 may also be vacated. This causes a pronounced drop in occupancy
for those sites which is not considered in the solutions to the PDE model. To combat this
drop in probability the right hand boundary condition is extended to these sites for a fraction
of instances when sites to the left of xmax are empty.

3.3 Continuum-discrete comparison at steady state
A comparison of the discrete and continuum steady states is shown in Fig. 9. It is clear that
the match between the discrete and continuum models is far better than for the simulations
without ghost sites, presented in Sec. 3.2. Again, as would be expected from Sec. 2.3, the
discrete and continuum models match perfectly when L = 1. The discrete and continuum
models also appear to match well for L = 2, although a slight discrepancy is noted when
x > 50. For L = 3 the mismatch is more pronounced. Given the previous difficulty with
the implementation of boundary conditions this is likely to be result of how the boundary
condition at the right hand side is implemented. For L = 4 the match again appears very
good although there is a pronounced fluctuation at x = 97.
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Figure 9: Comparison of the discrete steady state simulations (blue) and steady state solutions (red
dotted) for L = 1, 2, 3 and 4 ((a), (b), (c) and (d) respectively) given the initial and boundary con-
ditions in Eqs. 24-(26). The discrete simulations were conducted with t = 9000, M = 10000 and
xmax = 100.

Despite the results being non-conclusive, it would appear as though there is minimal
discrepancy at steady state between the discrete and continuum models. This would indicate
that the use of the Taylor series expansion to relate the occupancy of lattice sites was the
main cause for the discrepancy observed at the edges of the spreading agent population in
Fig. 5. Thus the independence assumption appears to have had no real impact upon the



validity of the continuum model derived.

4 Discussion and conclusions
Most existing applications of exclusion process models to collective cell spreading rely upon
the assumption that cells can be represented as “round” agents occupying a single lattice
site [7, 11–13]. However, cells are often rod shaped and elongated [1, 14, 16] and there
is evidence suggesting that this elongation has a significant effect upon the motility of the
cells [14]. Here, the collective migration of cells is simulated through a generalised exclusion
process model where each cell is represented by an agent occupying L ≥ 1 adjacent lattice
sites. A continuum description of a population of such agents is derived by making standard
assumptions and forming discrete conservation statements. For “round” agents whereL = 1,
the resulting continuum model has a linear diffusion mechanism whereas for L > 1 the
continuum limit process resulted in degenerate non-linear diffusion models related to the
PME. Although a slight discrepancy is observed between the averaged density data from the
simulations and the continuum models at the sharp fronts of the solutions to the PME for
L > 1, the overall comparison between the continuum and discrete data is good. The results
suggest that it is important to take the cell elongation into account when modelling collective
cell spreading.

In addition to the work of Simpson, Baker and McCue [16], this report also analyses the
assumption that a Taylor series expansion may be used to relate the occupancy of the lattice
sites. It therefore represents the first attempt to analyse the impact of this assumption upon
the shape dependent continuum model and thereby tests the validity of the models presented
in [16]. While no conclusive results were able to be presented it appears as though the
Taylor series expansion plays an important role in the discrepancy noted in Sec. 2.3, as there
is a good match between the discrete and continuum steady state models. Implementing
the boundary conditions required to simulate the steady state distribution of a spreading
agent population is neither intuitive nor simple. Further work will be undertaken to improve
the steady state simulation approach such that it can more accurately be compared to the
solutions presented.

Clearly the 1D models represented in this report are a substantial simplification of the
three dimensional nature of collective cell spreading. The extension of exclusion process
models and continuum models to two and three dimensions would offer a more thorough
description of collective cell migration. Modifying the exclusion process model such that it is
suitable in 2D requires separating the randomly determined probability of an agent moving in
a certain direction, pd, into at least four categories; pd ≤ 0.25, 0.25 < pd ≤ 0.5, 0.5 < pd ≤
0.75 and 0.75 < pd ≤ 1, representing the attempted movement in the positive and negative x



and y directions. 2D simulations and continuum models are presented for agents of varying
aspect ratio in the work of Simpson, Baker and McCue [16] for a population of uniformly
aligned agents and a population consisting of two sub-populations, one horizontally and one
vertically aligned. Note that in higher dimensions, agents are also able to rotate, a property
which cannot be represented in a one dimensional model such as the one considered.

In addition, the model presented in this report considers an unchanging population of
cells which spread without any growth, proliferation or change in shape. Models which in-
clude the changing size and shape of cells have particular applications in cancer biology.
As highlighted in the work of Smith, Marra and Marshall, the dynamic elongation of live
tumour cells can have a pronounced impact upon motility [14]. These dynamical changes
may be modelled by including a second probability term, Pg ∈ [0, 1], describing cell growth
or elongation, which would cause agents in the exclusion process model to occupy an in-
creasing or decreasing amount of lattice sites. Consider the 1D case for an agent with L = 1
occupying site i, where Pg = 1. During the time interval τ the agent may attempt to grow to
an agent with L = 2, occupying sites i and i+ 1 (Fig. 1(a)).
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