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1 Introduction

The Euler Characteristic of a shape is what is known as a topological invariant. That
is, under continuous deformation of our shape, we will always arrive at a shape with the
same Euler Characteristic. We can therefore deduce that two shapes that do not share
the same Euler Characteristic can not be deformed to one another continuously. The
idea of a topological invariant is useful in classifying spaces and we look for structures
that preserve the most information about spaces that are equivalent via continuous
deformation.

The de Rham cohomology is a structure, specifically a vector space, on a space based
upon your ability to solve differential equations on it that is also a topological invariant.
In 1931 Georges de Rham proved a result that relates the de Rham cohomology to a
much more abstract cohomology. The result as stated in 1931 is very different from the
result as interpreted today since the notion of cohomology had not been formed yet.
The purpose of this paper will be to prove a specific case of the theorem as interpreted
today, namely the isomorphism between what is known as the Čech cohomology and
the de Rham cohomology. In order to do this, we first introduce the notion of coho-
mology, then prove some fundamentals of the de Rham cohomology, after which we
form the necessary relations between the de Rham cohomology and Čech cohomology
to complete the proof.

2 The de Rham Complex

2.1 Multivariable Calculus

When doing calculus in R3 we often come across the operators Grad, Curl and Div.
Given U ⊂ R3 and smooth functions f, f1, f2, f3 : U → R we define:

Grad(f) = ∇f = 〈∂f
∂x
, ∂f
∂y
, ∂f
∂z
〉,

Curl(〈f1, f2, f3〉) = ∇× 〈f1, f2, f3〉 = 〈∂f3
∂y
− ∂f2

∂z
, ∂f1
∂z
− ∂f3

∂x
, ∂f2
∂x
− ∂f1

∂y
〉,

and Div(〈f1, f2, f3〉) = ∇ · 〈f1, f2, f3〉 = ∂f1
∂x

+ ∂f2
∂y

+ ∂f3
∂z
.

A helpful way of visualising these operators is the following diagram:{
functions

from U to R

}
∇−−−−→

{
vector fields

on U over R3

}
∇×−−−−→

{
vector fields

on U over R3

}
∇·−−−−→

{
functions

from U to R

}
where we observe that the composition of two consecutive operations will give us 0, i.e.
Curl◦Grad = 0 andDiv◦Curl = 0. This is equivalent to saying im(Grad) ⊂ ker(Curl)



and im(Curl) ⊂ ker(Div). The natural question to ask is under what conditions these
two inclusions hold as equalities. Before answering this question we will first try to
generalise our notions of Grad, Curl and Div to higher dimensions.

2.2 Differential Forms

Let Rn have the standard basis B = {x1, x2, ..., xn}. We firstly denote the smooth
functions from Rn to R by the 0-forms, Ω0(Rn). The notion of Grad can be easily
extended to the functions in Ω0(Rn) by:

Grad(f) = 〈 ∂f
∂x1
, ∂f
∂x2
, ..., ∂f

∂xn
〉

For reasons that will become clear, we will instead denote this analog of Grad by d
and write it as:

df =
n∑
i=1

∂f
∂xi
dxi .

In general a 1-form is anything of the form:

ω =
n∑
i=1

fi dxi

where fi ∈ Ω0(Rn) for i = 1, 2, ..., n. The set of all 1-forms defined on Rn is denoted
Ω1(Rn). We can integrate a 1-form over a curve in n-dimensional space quite naturally
too.

Example 2.1: Let ω =
n∑
i=1

fi dxi ∈ Ω1(Rn) and C be a curve in Rn parametrised by

γ : [0, 1]→ Rn, γ(t) = (γ1(t), ..., γn(t)). Then∫
C

ω =

∫
C

n∑
i=1

fi dxi

=

∫ 1

0

n∑
i=1

fi ◦γ dγi

=

∫ 1

0

n∑
i=1

fi(γ(t))γ′i(t) dt



Example 2.2: Let ω = 2x dx + 3 dy ∈ Ω1(R2) and C be a curve in R2 parametrised
by γ : [0, 1]→ R2, γ(t) = (t2, 2t). Then∫

C

ω =

∫
C

2x dx+ 3 dy

=

∫ 1

0

2t2 d(t2) + 3 d(2t)

=

∫ 1

0

4t3 dt+ 6 dt

=

∫ 1

0

4t3 + 6 dt

=
[
t4 + 6t

]1
0

= 7

Whilst Grad is easily extended to a higher dimension, the notion of Curl on a
vector field 〈f, g, h〉 is often motivated by taking the psuedo-determinant of the 3x3
matrix:  i j k

∂
∂x

∂
∂y

∂
∂z

f g h


which can’t be extended to higher dimensions in any obvious manner. To counter this,
we introduce the notion of a 2-form. A 2-form on Rn is an object of the form

ω =
n∑

i,j=1

fij dxi ∧ dxj ∈ Ω2(Rn)

where the wedge product, ∧, is a similar operation to the cross-product on R3 in the
sense that:

dx ∧ dx = 0
dx ∧ dy = −dy ∧ dx

In this construction, we treat the functions as ‘linear coefficients’ in that:

(f dx) ∧ dy = f(dx ∧ dy) = dx ∧ f(dy)

We can now extend d to act on a 1-form, ω, by defining:



dω = d

(
n∑
i=1

fi dxi

)
=

n∑
i=1

dfi ∧ dxi

It is not immediately obvious that d is an analog of Curl, but we note that given
ω = f1 dx+ f2 dy + f3 dz ∈ Ω1(R3) where f1, f2, f3 ∈ Ω0(R3)

dω =d(f1 dx+ f2 dy + f3 dz)

=df1 ∧ dx+ df2 ∧ dy + df3 ∧ dz

=

(
∂f1

∂x
dx ∧ dx+

∂f1

∂y
dy ∧ dx+

∂f1

∂z
dz ∧ dx

)
+

(
∂f2

∂x
dx ∧ dy +

∂f2

∂y
dy ∧ dy +

∂f2

∂z
dz ∧ dy

)
+

(
∂f3

∂x
dx ∧ dz +

∂f3

∂y
dy ∧ dz +

∂f3

∂z
dz ∧ dz

)
=

(
∂f3

∂y
− ∂f2

∂z

)
dy ∧ dz +

(
∂f1

∂z
− ∂f3

∂x

)
dz ∧ dx+

(
∂f2

∂x
− ∂f1

∂y

)
dx ∧ dy

which, as you may have noticed, looks strikingly similar to

Curl(〈f1, f2, f3〉) =

〈
∂f3

∂y
− ∂f2

∂z
,
∂f1

∂z
− ∂f3

∂x
,
∂f2

∂x
− ∂f1

∂y

〉
The elements of Ω2(Rn) form a module over the smooth functions, C∞(Rn,R),

since we can add forms together and multiply them by smooth functions. We can
therefore form a basis for Ω2(Rn), namely:

{dxi ∧ dxj : xi, xj ∈ B, i < j}.

In general we have q-forms which are of the form

ω =
∑

i1,...,iq

fi1···iq dxi1 ∧ · · · ∧ dxiq ∈ Ωq(Rn).

Once again, these form a basis over C∞(Rn,R) where the basis of Ωq(Rn) can be
written

{dxi1 ∧ dxi2 ∧ · · · ∧ dxiq : xi1 , ..., xiq ∈ B, i1 < · · · < iq}.

Remark: Because of the rule dxi ∧ dxj = −dxj ∧ dxi, differential forms that have the
same indices are not linearly independent. To correct this, so as to form a basis, we
order the indices.



From this basis on the q-forms it is evident that if q > n then Ωq(Rn) = 0. We can
think of dx1∧dx2∧· · ·∧dxq as an infinitesimal, signed notion of n-dimensional volume
over which we can integrate given a parametrisation. The wedge product be used on
arbitrary forms rather than just the dx elements, so we define the notion of the wedge
product on two differential forms.

Definition 2.1: Let ω =
∑
f dxi1∧· · ·∧dxip ∈ Ωp(Rn) and ψ =

∑
g dxj1∧· · ·∧dxjq ∈

Ωq(Rn). We define ∧ : Ωp(Rn)×Ωq(Rn)→ Ωp+q(Rn) by

ω ∧ ψ =
∑
f · g dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq

The natural extension of d : Ωq(Rn)→ Ωq+1(Rn) arises by defining

dω =
∑

i1,...,iq

dfi1···iq ∧ dxi1 ∧ · · · ∧ dxiq ∈ Ωq+1(Rn)

which is compatible with our previous understanding of d. In order to see if our
extension of d is also an analog of Div, suppose we have a 2-form, ω = f1 dy ∧ dz −
f2 dx ∧ dz + f3 dx ∧ dy. Then

dω = df1 ∧ dy ∧ dz − df2 ∧ dx ∧ dz + df3 ∧ dx ∧ dy

=
∂f1

∂x
dx ∧ dy ∧ dz − ∂f2

∂y
dy ∧ dx ∧ dz +

∂f3

∂z
dz ∧ dx ∧ dy

=

(
∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z

)
dx ∧ dy ∧ dz

which is as we expect.

Theorem 2.1: d2 = 0.



Proof. Since d is linear it will be sufficient to show this for the case ω = f dxi1∧· · ·∧dxiq

d2ω =d(df ∧ dxi1 ∧ · · · ∧ dxiq)

=d

(
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxiq

)

=
n∑
j=1

d

(
∂f

∂xj

)
dxj ∧ dxi1 ∧ · · · ∧ dxiq

=
n∑

j,k=1

∂2f

∂xj∂xk
dxk ∧ dxj ∧ dxi1 ∧ · · · ∧ dxiq

=
∑
j>k

∂2f

∂xj∂xk
dxk ∧ dxj ∧ dxi1 ∧ · · · ∧ dxiq

−
∑
j<k

∂2f

∂xj∂xk
dxj ∧ dxk ∧ dxi1 ∧ · · · ∧ dxiq

In this last step we break the summand into the component where j > k and where
j < k and then swap the dxk ∧ dxj of latter so that they are in order. We then note
that with a change of variables in the second sum, namely swapping j and k, we can
further simplify to:

d2ω =
∑
j>k

(
∂2f

∂xj∂xk
− ∂2f

∂xk∂xj

)
dxk ∧ dxj ∧ dxi1 ∧ · · · ∧ dxiq

And thus, by the commutativity of partial derivatives on smooth functions, we have
that d2ω = 0 for every differential form. Hence, d2 = 0.

2.3 The de Rham Complex

The collection of all differentiable forms on Rn is denoted the de Rham Complex on Rn

Ω∗(Rn) =
⊕
q

Ωq(Rn).

The domain Rn is superficial and could easily be replaced by a subset U ⊂ Rn, however.
A form defined on U ⊂ Rn has a larger set of smooth functions to call on. For example,
if we let V = R2\{(0, 0)}, the differential form

ω = y
x2+y2

dx+ x
x2+y2

dy



cannot be defined on R2, but can be defined on V . We denote the set of all differentiable
q-forms on U ⊂ Rn by Ωq(U) and similarly the collection of all differentiable forms on
U is denoted the de Rham Complex on U

Ω∗(U) =
⊕
q

Ωq(U).

To ensure that d makes sense, we will want to be careful in our choice of U . We will
require that our space looks locally similar enough to Rn for some n ∈ N so that we can
perform calculus on it. In the language of topology, we will require a smooth manifold :
a manifold with a differentiable structure.

Definition 2.2: A differentiable structure on an n-dimensional manifold M is given by
an atlas, i.e., an open cover {Uα}α∈A of M in which each open set Uα is homeomorphic
to Rn via a homeomorphism φα : Uα → Rn, and on the overlaps Uα ∩Uβ the transition
functions

gαβ = φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ)

are diffeomorphisms of open subsets of Rn. All manifolds will be assumed to be Haus-
dorff and to have countable basis.

This definition is taken from Bott & Tu [1, p.20], but for those interested in a
deeper understanding of manifolds we refer the reader to Conlon [3]. The theory of
differential forms and the de Rham complex on Rn naturally extends to the setting of
manifolds but for more details it is strongly recommended that you read Bott & Tu
[1] for further details.

Definition 2.3: Let M be an n-dimensional manifold and ω ∈ Ωq(M). We say that
ω is closed if dω = 0 and exact if there exists φ ∈ Ωq−1(M) such that ω = dφ

A closed form is hence an element of the kernel of d and an exact form is an element
of the image of d. A corollary of theorem 1.1 is that every exact form is closed. This
is a property that is familiar to a class of objects called differential complexes.

Definition 2.4: A direct sum of vector spaces C =
⊕

q∈ZC
q is called a differential

complex if there are linear maps ∂i : Ci → Ci+1 such that ∂i+1 ◦ ∂i = 0. We call ∂i a
differential operator of the complex C.

· · · −−→ Cq−1 ∂q−1−−→ Cq ∂q−−→ Cq+1 −−→ · · ·



Definition 2.5: Let c be an element of a differential complex C with differential op-
erators ∂i : Ci → Ci+1. We say c is a p-cocycle if c ∈ ker(∂p) and a p-coboundary if
c ∈ im(∂p−1).

Corollary 2.2: Ω∗(M) is a differential complex with differential operator d for a given
manifold M .

Remark: We let Ωq(M) = 0 for all q < 0.

2.4 Cohomology

In the more general setting of a differential complex we find that im(∂q−1) ⊂ ker(∂q).
The natural question to ask is when are these equal? Or, phrased in the setting of
the de Rham complex on a manifold M , is every closed differential form exact? More
explicitly, if ω is an arbitrary closed q-form, is there always a (q− 1)-form φ such that
dφ = ω? We measure our failure to solve for φ on M by the construction of the de
Rham Cohomology.

Definition 2.6: The q-th de Rham cohomology of a manifold M is the quotient space

Hq
dR(M) = {closed q-forms}/{exact q-forms}

= ker(d : Ωq(M)→ Ωq+1(M))/im(d : Ωq−1(M)→ Ωq(M)).

For notational simplicity we will denote d : Ωq(M) → Ωq+1(M) by dq and an
equivalence class of elements in Hq

dR(M) by [ω] where all of the elements in [ω] are of
the form ω+dφ for some φ ∈ Ωq−1(M). More generally, we can define the cohomology
of a given complex C.

Definition 2.7: The q-th cohomology of a complex C is the quotient space

Hq(C) = ker(∂i)/im(∂i−1).

In general, the cohomology of a complex C is the direct sum of these quotient spaces:

H∗(C) =
⊕
q∈Z

Hq(C).

Proposition 2.3: The dimension of H0
dR(M) is precisely the number of connected

components of an n-dimensional manifold M .



Proof. Firstly, we note that

H0
dR(M) = ker(d0)/im(d−1)

= ker(d)/{0}
= ker(d)

Since 0-forms are smooth functions, we are looking for f such that

df =
n∑
i=1

∂f
∂xi
dxi = 0 =⇒ ∂f

∂xi
= 0 for all i = 1, ..., n

These are exactly the locally constant functions on M - or specifically, functions that
are constant on each connected component of M . Denote each connected component
Ui and let fi : M → R be the function

fi(x) =

{
1 if x ∈ Ui
0 else

We can then write any function in H0
dR(M) as f =

∑
i

cifi for some ci ∈ R.

Corollary 2.4: If a manifold M has n connected components then H0
dR(M) ∼= Rn.

Explicitly trying to find Hq
dR(M) will prove too difficult for a general manifold to

begin with, so we will attempt to find the cohomology of a familiar manifold, the real
line.

Example 2.3: We will show that Hq
dR(R) ∼=

{
R if q = 0
0 else

Firstly, we know that any two points a < b ∈ R can be joined by a line segment
[a, b] ⊂ R so clearly R is connected and H0

dR(R) = R. Looking at higher dimensions,
we note that the elements of Ωq(R) are of the form

ω =
∑
f dxi1 ∧ · · · ∧ dxiq ,

however R only has one element in its standard basis, say x. Therefore, since dx∧dx =
0, we must have that Ωq(R) = 0 for all q > 1 and thus, Hq

dR(R) = 0 for all q > 2. Now
let

ω = f dx ∈ Ω1(R)



and define F ∈ Ω0(R) by

F (x) =

∫ x

0

f(t) dt

By the fundamental theorem of calculus,

dF = d

(∫ x

0

f(t) dt

)
=

d

dx

(∫ x

0

f(t) dt

)
dx

= f(x) dx

= ω

Since im(d0) = Ω1(R) and ker(d0) = Ω1(R), H1
dR(R) = ker(d1)/im(d0) – and thus

Hq
dR(R) ∼=

{
R if q = 0
0 else

3 The Mayer-Vietoris Sequence

Rather than calculating the cohomology of spaces on a case by case basis we would
like to take results that are simple to prove (e.g. the cohomology of the real line) and
relate these results to more complex spaces. In this section we will first show that if a
manifold is contractible then it will be endowed with a particular cohomology and then
use the cohomologies of contractible manifolds as the building blocks of cohomologies
of more interesting manifolds.

3.1 Pullbacks

Suppose we would like to define a smooth function g : Rn → R on a different domain
U ⊂ Rm. If we have a function f : U → Rn then by defining

f ∗(g) = g ◦ f : U → R

we can effectively ‘pull’ the domain of g back to U . In order to preserve structure, we
seek a definition of f ∗ on differential forms that commutes with d.



Definition 3.1: Let f be a smooth function f : Rm → Rn, f(x1, ..., xm) = (f1, ..., fn)
where fi : Rm → R. Then f induces a pullback map f ∗ : Ω∗(Rn)→ Ω∗(Rm) on a form
ω =

∑
gi1···iq dxi1 ∧ dxi2 ∧ · · · ∧ dxiq by

f ∗(ω) = f ∗
(∑

gi1···iq dxi1 ∧ dxi2 ∧ · · · ∧ dxiq
)

=
∑

(gi1···iq ◦ f) dfi1 ∧ · · · ∧ dfiq

Example 3.1: First, for notational simplicity, denote the standard basis of R2 by
{u, v} and the standard basis of R3 by {x, y, z}. Let f : R3 → R2, f(x, y, z) =
(y sin(x), z) and ω = u2v du ∧ dv ∈ Ω2(R2).

f ∗(ω) =f ∗(u2v du ∧ dv)

=(y sin(x))2z d(y sin(x)) ∧ d(z)

=y2sin2(x) z (sin(x) dy + y cos(x) dx) ∧ dz
=y2sin3(x) z dy ∧ dx+ y3sin2(x)cos(x) z dx ∧ dz

For a proof that d commutes with f ∗ we refer the reader to the proof presented in
Bott & Tu [1, p.19]. If we look back at example 1.1 and example 1.2 we notice these
are just pullbacks of differential forms defined on a curve to the unit interval. We will
use the idea of a pullback of a differential form to find the cohomology of all manifolds
that are contractible.

Definition 3.2: A topological space X is contractible if the identity map idX : X → X
is homotopic to a constant map. That is, there is a continuous map h : X× [0, 1]→ X
such that

h(x, 0) = x0 and h(x, 1) = idX(x) = x

To prove our next big theorem we are going to use a homotopy as a pullback on
a differential form. As defined above, this will require the map h : X × [0, 1] → X
(sometimes called a contraction of X) to be smooth which is not a condition imposed
in the definition of a manifold being contractible. As it turns out, we can always find
a smooth contraction if there exists a continuous contraction and for those interested
in the proof we direct the reader to proposition 17.8 in Bott & Tu [1, p.213].

Theorem 3.1 (Poincaré Lemma): Suppose a manifold M is contractible. Then

Hq
dR(M) ∼=

{
R if q = 0
0 else



Proof. Suppose M is contractible with a smooth contraction h : M× [0, 1]→M where
h(x, 1) = idM(x) and h(x, 0) = x0 for some x0 ∈M . The method of proof will involve
showing that for q > 1 every closed q-form is exact and hence ker(dq) = im(dq−1) =⇒
Hq
dR(M) = 0. Given a form ω ∈ Ωq(M),

h∗(ω) =h∗
(∑

fi1···iq dxi1 ∧ · · · ∧ dxiq
)

=
∑

fi1···iq ◦ h dhi1 ∧ · · · ∧ dhiq

which, because h is defined on M × [0, 1], will then be of the form

h∗(ω) =
∑

gi1···iq dxi1 ∧ · · · ∧ dxiq
+
∑

kj1···jq−1 dt ∧ dxj1 ∧ · · · ∧ dxjq−1

where t ∈ [0, 1] and gi1···ıq , kj1···jq−1 ∈ Ω0(M × [0, 1]). By defining

Kω =
∑(∫ 1

0

kj1···jq−1 dt

)
∧ dxj1 ∧ · · · ∧ dxjq−1

We are turning ω ∈ Ωq(M) into a (q − 1)-form. Since

h∗(dω) = dh∗(ω) =
∑ ∂gi1···iq

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxiq

+
∑ ∂gi1···iq

∂t
dt ∧ dxi1 ∧ · · · ∧ dxiq

+
∑ ∂kj1···jq−1

∂xi
dxi ∧ dt ∧ dxj1 ∧ · · · ∧ dxjq−1

we observe the relationship

dKω +Kdω =
∑(∫ 1

0

∂kj1···jq−1

∂xi
dt

)
∧ dxi ∧ dxj1 ∧ · · · ∧ dxjq−1

+
∑(∫ 1

0

∂gi1···iq
∂t

dt

)
∧ dxi1 ∧ · · · ∧ dxiq

−
∑(∫ 1

0

∂kj1···jq−1

∂xi
dt

)
∧ dxi ∧ dxj1 ∧ · · · ∧ dxjq−1

=
∑(∫ 1

0

∂gi1···iq
∂t

dt

)
∧ dxi1 ∧ · · · ∧ dxiq



But since

∂

∂t
(dt ∧ h∗(ω)) =

∑ ∂gi1···iq
∂t

dt ∧ dxi1 ∧ · · · ∧ dxiq

and by the fundamental theorem of calculus,

dKω +Kdω = h∗(ω)
∣∣
t=1
− h∗(ω)

∣∣
t=0

But we know that h∗(ω)
∣∣
t=1

= idM(ω) = ω and h∗(ω)
∣∣
t=0

= 0 since all the derivatives
of a constant map vanish. Thus we have that

dKω +Kdω = ω

For a closed differential form ω we thus have that

dKω +Kdω = dKω +K(0) = ω

and hence ω is the derivative of the differential (p−1)-form Kω and hence every closed
form is exact. From this, we can deduce Hq

dR(M) = 0 for all q > 0. For q = 0 we
realise that since M is contractible to a point x0 ∈ M , everything is path connected
to x0 and hence M is connected, implying that H0

dR(M) = R. Thus,

Hq
dR(M) ∼=

{
R if q = 0
0 else

With this result, we have categorised the cohomology of every contractible manifold.
In order to extend this to more exotic manifolds we will have to think of a more
sophisticated technique.

3.2 Exact Sequences

Earlier we introduced the notion of a differential complex. A differential complex or,
more generally, any sequence of vector spaces

· · · −−→ Cq−1 ∂q−1−−→ Cq ∂q−−→ Cq+1 −−→ · · ·

is called exact if ker(∂q) = im(∂dq−1) for all q ∈ Z. As we have seen with the Poincaré
Lemma above, the sequence



· · · −−→ Ωq−1(M)
d−−→ Ωq(M)

d−−→ Ωq+1(M) −−→ · · ·

is exact. We could also specify a special kind of exact sequence of the form

0 −−→ A
f−−→ B

g−−→ C −−→ 0

which we call a short exact sequence. The reason it is special is because we have forced
the linear maps f and g to be injective and surjective respectively.

Theorem 3.2: Consider the short exact sequence

0 −−→ A
f−−→ B

g−−→ C −−→ 0.

Then f is injective and g is surjective.

Proof. By definition f is injective if ker(f) = 0. Since the map from 0→ A must be a
linear map, we must have that its image is 0. Thus, by exactness

im(0→ A) = 0 = ker(f)

We also have that the kernel of the map from C → 0 must be all of C. Once again, by
exactness

ker(C → 0) = C = im(g),

so g is surjective by definition.

We could also have the scenario where A, B and C are complexes themselves. If
the maps f and g are defined such that they commute with the differential operators
of each complex – i.e. for

...
...

...

0 Aq+1 Bq+1 Cq+1 0

0 Aq Bq Cq 0

...
...

...

dA

dA

dA

dB

dB

dB

dC

dC

dC

f

f

g

g



we have that f ◦ dA = dB ◦ f and g ◦ dB = dC ◦ g – we call f and g chain maps. This
induces a result with the cohomologies of A, B and C that is important in constructing
the cohomology of non-contractible manifolds.

Remark: Note that we say that a sequence of differential complexes

0 −−→ A
f−−→ B

g−−→ C −−→ 0

is short exact if the sequence

0 −−→ Aq
f−−→ Bq g−−→ Cq −−→ 0

is a short exact sequence for all q ∈ Z

Lemma 3.3: Given a short exact sequence of differential complexes

0 −−→ A
f−−→ B

g−−→ C −−→ 0

in which f and g are chain maps, the natural maps f ∗ and g∗ where

Hq(A)
f∗−−→ Hq(B)

g∗−−→ Hq(C)

are well defined and form an exact sequence.

Proof. Firstly, for a ∈ Aq closed, denote [a] ∈ Hq(A) to be the coset of closed q-forms
containing a (i.e. a′ ∈ [a] ⇐⇒ a′ − a is exact). We want the functions f ∗ : Hq(A)→
Hq(B) and g∗ : Hq(B) → Hq(C) where f ∗([a]) = [f(a)] and g∗([b]) = [g(b)] to be
well defined. Suppose a′ − a is exact in Aq, so then [a′] = [a]. We can therefore write
a′ = a+ dAω for ω ∈ Aq−1. Thus

f(a′) = f(a+ dAω)

= f(a) + f(dAω) [by linearity]

= f(a) + dBf(ω) [since f is a chain map]

So we then have f(a′) − f(a) = dBf(ω) and therefore f ∗([a]) = [f(a)] = [f(a′)] =
f ∗([a′]). Notice that since we only used the linearity of f and the fact it is a chain
map, thus the method is analogous for showing g∗ is well defined.

Now we want to show that ker(g∗) = im(f ∗). Suppose [b] ∈ ker(g∗), implying that



g∗([b]) = [0] ∈ Hq(C). Therefore g(b) is exact =⇒ g(b) = dBc for some c ∈ Cq−1.
But g is surjective, so c = g(b′) for some b′ ∈ Bq−1.

∴ g(b) = dCg(b′)

∴ g(b) = g(dBb
′)

∴ g(b− dBb′) = 0

Then there is an a ∈ Aq such that f(a) = b− dBb′ since ker(g) = im(f).
Note too that f(dAa) = dBf(a) = dB(b − dBb

′) = dBb − d2
Bb
′ = 0 since b is closed

and d2
B = 0. So, by the injectivity of f , dAa = 0 which implies a is closed. Therefore

[b] ∈ ker(g∗) implies that there is an [a] ∈ Hq(A) such that f ∗([a]) = [b] and thus

ker(g∗) ⊂ im(f ∗).

Now suppose [b] ∈ im(f ∗), i.e. that [b] = f ∗([a]) for some [a] ∈ Hq(A). Then let
a ∈ [a] where f(a) = b′ ∈ [b]. Since ker(g) = im(f), we have that g(f(a)) = 0. But
then g∗([b]) = g∗([b′]) = [g(b′)] = [0]. Therefore [b] ∈ im(f ∗) which implies g∗([b]) = [0].
So

ker(g∗) ⊃ im(f ∗) =⇒ ker(g∗) = im(f ∗)

This gives us an important result about cohomologies, but we are one step away
from an even more powerful result. The next result, the snake lemma, relates the qth

cohomology of C to the (q + 1)th cohomology of A.

Theorem 3.4 (Snake Lemma): Given a short exact sequence of differential complexes

0 −−→ A
f−−→ B

g−−→ C −−→ 0

in which f and g are chain maps, there is a homomorphism ∂ : Hq(C) → Hq+1(A)
such that the sequence in the following diagram is exact.

· · · ∂−−→ Hq(A)
f∗−−→ Hq(B)

g∗−−→ Hq(C)
∂−−→ Hq+1(A)

f∗−−→ · · ·

The proof of this result is slightly more technical than the result above and hence
is included only as an appendix for those interested. We can utilise this sequence
by splitting a manifold M into two subsets U and V and form the Mayer-Vietoris
sequence. We will first have to take a slight detour to define a partition of unity.



Definition 3.3: A partition of unity on an open cover {Uα}α∈I of a manifold M is a
collection of non-negative smooth functions {ρα}α∈I such that

1. Every point has a neighbourhood in which
∑
α∈I

ρα is a finite sum

2.
∑
α∈I

ρα = 1

3. ρα(x) = 0 for all x 6∈ Uα
It is a fact that every cover of a manifold can be endowed with a partition of unity.

Unfortunately the proof is well beyond the scope of this project and we direct the
curious reader to Madsen & Tornehave [2, p.221-225]. Now, onto the main event!

Theorem 3.5: Let M be a manifold with U, V ⊂M manifolds such that U ∪ V = M .
The Mayer-Vietoris sequence,

0 −−→ Ω∗(M)
i−−→ Ω∗(U)⊕Ω∗(V )

j−−→ Ω∗(U ∩ V ) −−→ 0

where i : Ω∗(M)→ Ω∗(U)⊕Ω∗(V ) is defined by

i(ω) = (ω
∣∣
U
, ω
∣∣
V

)

and j : Ω∗(U)⊕Ω∗(V )→ Ω∗(U ∩ V ) is defined by

j(ω1, ω2) = ω2

∣∣
U∩V − ω1

∣∣
U∩V

is an exact sequence.

Proof. Firstly, we would like to show that ker(i) = 0. This is simple to show since

i(ω) = (ω
∣∣
U
, ω
∣∣
V

) = (0, 0)

if and only if ω = 0 globally. We can also see that an element of the kernel of j, i.e.
an element (ω1, ω2) such that

j(ω1, ω2) = ω2

∣∣
U∩V − ω1

∣∣
U∩V = 0,

must have that each component agrees on the overlap U ∩ V and therefore is a global
form in the image of i. Showing j is surjective will require the use of a partition of
unity {ρU , ρV } on {U, V }, which covers M . Firstly, given ω ∈ Ω∗(U ∩V ) we can define
an object ω′ ∈ Ω∗(M) by

ω′(x) =

{
ω if x ∈ U ∩ V
0 else

This is not a differential form because ω′ is not necessarily smooth along the boundary
of U ∩ V . However, the forms



ρV ω
′
∣∣
U
∈ Ω∗(U) and ρUω

′
∣∣
V
∈ Ω∗(V )

are smooth on their respective sets. From this construction we have

j(−ρV ω′, ρUω′) =ρUω
′∣∣
U∩V − (−ρV ω′)

∣∣
U∩V

=ω

and since ω was arbitrary, j is surjective. Thus the Mayer-Vietoris sequence is exact.

From the Mayer-Vietoris sequence, as shown in the Snake Lemma, we get the long
exact sequence of cohomologies.

0 H0
dR (M) H0((Ω∗(U)⊕Ω∗(V )) H0

dR (U ∩ V )

∂

∂

H1
dR (M) H1((Ω∗(U)⊕Ω∗(V )) H1

dR (U ∩ V )

H2
dR (M) H2((Ω∗(U)⊕Ω∗(V )) · · ·

i∗ j∗

i∗ j∗

i∗ j∗

We will use this to calculate the cohomology of the circle, which as we will see is not
contractible.

Example 3.2: Consider the circle S1 with cover {U, V } where U is S1 with its north
pole removed and V is S1 with its south pole removed. From these two sets, we
construct the Mayer-Vietoris sequence of the circle:

0 −−→ Ω∗(S1)
i−−→ Ω∗(U)⊕Ω∗(V )

j−−→ Ω∗(U ∩ V ) −−→ 0

in order to induce the long exact sequence of cohomologies:

0→ H0
dR(S1)

i∗−−→ H0(Ω∗(U)⊕Ω∗(V ))
j∗−−→ H0

dR(U ∩ V )
∂−−→ H1

dR(S1)→ · · ·

Before proceeding, we will need to make sense of the term

H0(Ω∗(U)⊕Ω∗(V )).

In fact, we find that for any complexes A∗ and B∗



Hq(A∗ ⊕B∗) = Hq(A∗)⊕Hq(B∗)

due to the fact that

ker(dA⊕B) = ker(dA)⊕ ker(dB)

im(dA⊕B) = im(dA)⊕ im(dB)

So we in fact have the long exact sequence:

0→ H0
dR(S1)

i∗−−→ H0
dR(U)⊕H0

dR(V )
j∗−−→ H0

dR(U ∩ V )
∂−−→ H1

dR(S1)→ · · ·

From the Poincaré Lemma we know that

Hq
dR(U) ∼= Hq

dR(V ) ∼=
{

R if q = 0
0 else

And because U ∩ V is S1 with both poles removed, we could write it as the union of
two disjoint sets, say L and R for the left and right half respectively. Using the map i
(from the Mayer-Vietoris sequence) we find that

Ωq(L ∪R)
i−−→ Ωq(L)⊕Ωq(R)

is an isomorphism. We therefore have that

Hq
dR(U ∩ V ) ∼= Hq

dR(U)⊕Hq
dR(V ) ∼=

{
R ⊕ R if q = 0
0 else

We now know enough to calculate the cohomology of the circle using only algebra.
From proposition 1.3 and the fact that S1 is connected we know that H0

dR(S1) ∼= R.
We now consider what we know summarised in the following diagram.

0 H0
dR (S1) ∼= R R ⊕ R R ⊕ R

∂

∂

H1
dR (S1) 0 0

H2
dR (S1) 0 · · ·

i∗ j∗

i∗ j∗

i∗ j∗



To find H1
dR(S1) we note that since ker(i∗) = H1

dR(S1), by exactness we just need to
find im(∂). With some sneaky algebra using exactness we find that

H1
dR(S1) = im(∂) = R ⊕ R/ ker(∂)

= R ⊕ R/im(j∗)

But since i∗ is injective and

im(j∗) = R ⊕ R/ ker(j∗)

= R ⊕ R/im(i∗) ∼= R

we have that

H1
dR(S1) = R ⊕ R/R ∼= R

Note that since for all q > 1, Hq
dR(U ∩ V ) = Hq

dR(U)⊕Hq
dR(V ) = 0 we get that

∂ : 0→ Hq
dR(S1)

is an isomorphism by exactness. With all this information, we have calculated the
cohomology of S1,

Hq
dR(S1) ∼=


R if q = 0
R if q = 1
0 else

3.3 Generalising the Mayer-Vietoris Sequence

Although the Mayer-Vietoris sequence is a very useful tool for computing the coho-
mology of a manifold, we wish to extend this idea to a more general setting. With our
understanding thus far, we are required to find a cover of a manifold M , {U, V }, such
that we are able to make deductions on the cohomology of M using the long exact
sequence:

· · · → Hq−1
dR (U∩V )→ Hq

dR(M)→ Hq
dR(U)⊕Hq

dR(V )→ Hq
dR(U∩V )→ Hq+1

dR (M)→ · · ·

This relies on us being able to calculate Hq
dR(U) ⊕ Hq

dR(V ) and Hq
dR(U ∩ V ), which

may not be as easy as our example with the circle.
Using the Poincaré Lemma, we are easily able to deduce the cohomology of a

contractible set — a set that is homotopy equivalent to a point — so it would be useful
if we could somehow restrict the sets we cover our manifold with to contractible sets
such that their intersections are also contractible. This is the notion of a good cover.



Definition 3.4: Let M be a manifold of dimension n. An open cover U = {Uα}α∈A
of M is called a good cover if all nonempty finite intersections Uα0 ∩ · · · ∩ Uαp are
contractible

This is complemented well by the following theorem from Bott & Tu [1, p.42]

Theorem 3.6: Every manifold has a good cover. If the manifold is compact, then the
cover may be chosen to be finite.

The Mayer-Vietoris sequence will only be useful here if we can reduce our cover to
two sets, so we now consider a more general complex to accommodate a more general
covering.

4 Construction of the Čech Complex

4.1 Construction of the difference operator δ through a mo-
tivating example

We will attempt to first generalise the Mayer-Vietoris to a three-set cover before gen-
eralising even further to a cover of countable sets.

Consider a manifold M with a good cover U = {U1, U2, U3} and the sequence:

Ω∗(M)
δ−−→

3∏
i=1

Ω∗(Ui)
δ0−−→δ1−−→

3∏
i,j=1
i<j

Ω∗(Ui ∩ Uj)
δ0−−→δ1−−→δ2−−→

Ω∗(U1 ∩ U2 ∩ U3)→ 0→ 0→ · · ·

where the δi operators are restrictions — we will explicitly define them shortly. First,
let’s think about how elements of the sets in our sequence look.

We are familiar with Ω∗(M) which is just composed of the global forms on M, so

we start by thinking about elements of
3∏
i=1

Ω∗(Ui). We can think of these elements as

vectors with three components — i.e. ζ = (ω1, ω2, ω3) where ωi ∈ Ω∗(Ui) — and define

the operator δ : Ω∗(M)→
3∏
i=1

Ω∗(Ui) by:

δω = (ω
∣∣
U1
, ω
∣∣
U2
, ω
∣∣
U3

)



Elements of
3∏

i,j=1
i<j

Ω∗(Ui∩Uj) can then be thought of a a vector with
(

3
2

)
components, i.e.

ξ = (ω12, ω13, ω23) where ωij ∈ Ω∗(Ui∩Uj). In this example, we are only left with three
sets, but one might imagine how large

(
n
2

)
can get when we generalise to a cover of n sets

— or even infinite sets! We define the operators δ0, δ1 :
3∏
i=1

Ω∗(Ui)→
3∏

i,j=1
i<j

Ω∗(Ui ∩ Uj)

by:

δ0(ω1, ω2, ω3) = (ω2

∣∣
U1
, ω3

∣∣
U1
, ω3

∣∣
U2

)

δ1(ω1, ω2, ω3) = (ω1

∣∣
U2
, ω1

∣∣
U3
, ω2

∣∣
U3

)

We then define an operator δ :
3∏
i=1

Ω∗(Ui)→
3∏

i,j=1
i<j

Ω∗(Ui ∩ Uj) by:

δ = δ0 − δ1

δ(ω1, ω2, ω3) = (ω2

∣∣
U1
− ω1

∣∣
U2
, ω3

∣∣
U1
− ω1

∣∣
U3
, ω3

∣∣
U2
− ω2

∣∣
U3

)

It is certainly important to note here that δ2ω = 0 if ω ∈ Ω∗(M) since

ωi
∣∣
Uj
− ωj

∣∣
Ui

= ω
∣∣
Ui

∣∣∣
Uj
− ω

∣∣
Uj

∣∣∣
Ui

= ω
∣∣
Ui∩Uj

− ω
∣∣
Ui∩Uj

= 0

so we are part way to making a differential complex.

We now consider elements of our final set, Ω∗(U1 ∩ U2 ∩ U3). We are now inter-
ested in defining the δi operators to complete out differential complex. We define

δ0, δ1, δ2 :
3∏

i,j=1
i<j

Ω∗(Ui ∩ Uj)→ Ω∗(U1 ∩ U2 ∩ U3) by:

δ0(ω12, ω13, ω23) = ω23

∣∣
U1

δ1(ω12, ω13, ω23) = ω13

∣∣
U2

δ2(ω12, ω13, ω23) = ω12

∣∣
U3

and in order to extend this to a differential operator, we define

δ :
3∏

i,j=1
i<j

Ω∗(Ui ∩ Uj)→ Ω∗(U1 ∩ U2 ∩ U3) by:

δ = δ0 − δ1 + δ2,
δ(ω12, ω13, ω23) = ω23

∣∣
U1
− ω13

∣∣
U2

+ ω12

∣∣
U3



We can see that this is a differential operator since:

δ2(ω1, ω2, ω3) = (ω2

∣∣
U1
− ω1

∣∣
U2
, ω3

∣∣
U1
− ω1

∣∣
U3
, ω3

∣∣
U2
− ω2

∣∣
U3

)

= (ω3

∣∣
U2
− ω2

∣∣
U3

)
∣∣∣
U1

− (ω3

∣∣
U1
− ω1

∣∣
U3

)
∣∣∣
U2

+ (ω3

∣∣
U2
− ω2

∣∣
U3

)
∣∣∣
U3

= (ω3

∣∣
U1∩U2

− ω3

∣∣
U2∩U1

)− (ω2

∣∣
U3∩U1

− ω2

∣∣
U1∩U3

) + (ω1

∣∣
U2∩U3

− ω1

∣∣
U3∩U2

)

= 0

Thus, we have defined a differential complex on a manifold with a three-set covering
with differential operator δ.

4.2 Generalising to a countable collection of sets

Suppose we now have a manifold M with a good cover U = {Uα}α∈A. The condition
we will impose on U is that A, the index set, is countable and ordered. Since the set
is countable, the notion of ordering may seem trivial - but it will be much easier to
make sense of the complex with a clear notion of ordering. We will also simplify our
notation by denoting Uα0 ∩ Uα1 ∩ · · · ∩ Uαp by Uα0α1···αp and by letting ωα0···αp denote
a form on Uα0···αp .
Much as before, we will consider a more general sequence:

Ω∗(M)
δ−−→

∏
α∈A

Ω∗(Uα)
δ0−−→δ1−−→

∏
α,β∈A
α<β

Ω∗(Uαβ)

δ0−−→δ1−−→δ2−−→
∏

α,β,γ∈A
α<β<γ

Ω∗(Uαβγ)
−−→−−→−−→−−→

· · ·

The δi operators will act just as they did in the above example, but for clarity we will
try to define them explicitly in this generalised context. Suppose:

δi :
∏

α0,...,αp∈A
α0<α1<···<αp

Ω∗(Uα0···αp)→
∏

α0,...,αp+1∈A
α0<···<αp+1

Ω∗(Uα0···αp+1)

is an arbitrary restriction operator defined between p-tuple and (p + 1)-tuple inter-
sections of sets in U. Note that every (p + 1)-tuple intersection must have an ith

intersecting set since they are ordered.
So let ξ ∈

∏
Ω∗(Uα0···αp) and consider (δiξ)β0···βp+1 - the component of δiξ pertaining

to the intersection Uβ0 ∩ · · · ∩ Uβp+1 where β0 < · · · < βp+1 and β0, . . . , βp+1 ∈ A. The
operator δi (for some 0 ≤ i ≤ p+ 1) will take the component of ξ that is “missing” the
restriction to the set βi and is already restricted to Uβ0∩· · ·∩Uβi−1

∩Uβi+1
∩· · ·∩Uβp+1 .

Since this is a specific p-tuple of intersections, this corresponds to a unique component
of ξ. More explicitly:



(δiξ)β0···βp+1 = ωβ0···βi−1βi+1···βp+1

∣∣
Uβi

We can thus describe the general operator

δ :
∏

α0<···<αp
α0,...,αp∈A

Ω∗(Uα0···αp)→
∏

α0<···<αp+1
α1,...,αp+1∈A

Ω∗(Uα0···αp+1) by:

δ =
p∑
i=0

(−1)iδi,

(δξ)β0···βp+1 =
p∑
i=0

(−1)i · ωβ0···βi−1βi+1···βp+1

∣∣
Uβi

which gives us a well defined expression for every component of δξ ∈
∏

Ω∗(Uα0···αp+1)
and thus defines δ uniquely.

Theorem 4.1: δ2 = 0

Proof. Consider (δ2ξ)β1···βp+2

(δ2ξ)β0···βp+2 =

p∑
i=0

(−1)i · (δξ)β0···βi−1βi+1···βp+2

∣∣
Uβi

=

p+2∑
i=0

(−1)i ·

[
i−1∑
j=0

(−1)jωβ0···βj−1βj+1···βi−1βi+1···βp+2

∣∣
Uβj

+

p+2∑
j=i+1

(−1)j−1ωβ0···βi−1βi+1···βj−1βj+1···βp+2

∣∣
Uβj

]∣∣∣∣∣
Uβi

=

p+2∑
i,j=0
j<i

(−1)i+jωβ0···βj−1βj+1···βi−1βi+1···βp+2

∣∣
Uβi∩Uβj

+

p+2∑
i,j=0
j>i

(−1)i+j−1ωβ0···βi−1βi+1···βj−1βj+1···βp+2

∣∣
Uβi∩Uβj

= 0

Thus (δ2ξ)β0···βp+2 = 0 for every component of δ2ξ and for every ξ ∈
∏

Ω∗(Uα0···αp),
and therefore δ2 = 0.

We have thus defined a differential complex with differential operator δ and can
therefore define a cohomology on this complex. We can also restrict Ω∗ to Ωq and just
consider the sequence:



Ωq(M)
δ−−→

∏
α∈A

Ωq(Uα)
δ−−→

∏
α,β∈A
α<β

Ωq(Uαβ)
δ−−→

∏
α,β,γ∈A
α<β<γ

Ωq(Uαβγ)
δ−−→ · · ·

on which we can define an equivalent cohomology. We call the differential complex
above a Čech Complex on U with values in Ωq which we denote Č∗(U,Ωq), where
Čp(U,Ωq) is taken to be the product of all the possible combinations of p-tuple inter-
sections on U - or explicitly:

Čp(U,Ωq) =
∏

α0,...,αp∈A
α0<···<αp

Ωq(Uα0···αp)

5 Construction of the Čech-de Rham Double Com-

plex

We now have the right ingredients to proceed to a complex that incorporates both the
de Rham and the Čech complexes. First, it is helpful to picture the double complex
as a lattice:

...
...

...
...

Č0(U,Ω2) Č1(U,Ω2) Č2(U,Ω2) Č3(U,Ω2) · · ·

Č0(U,Ω1) Č1(U,Ω1) Č2(U,Ω1) Č3(U,Ω1) · · ·

Č0(U,Ω0) Č1(U,Ω0) Č2(U,Ω0) Č3(U,Ω0) · · ·

d d d d

d d d d

d d d d

δ δ δ δ

δ δ δ δ

δ δ δ δ

where we understand d to operate on an element of Čp(U,Ωq) componentwise. It
should be noted that the Ωq(M) have been deliberately left out of the large double
complex above.

We will also consider a more basic kind of the Čech Complex. Consider for example:
Č∗(U,R) - the Čech Complex on U with values in R. Much like Č∗(U,Ωq) takes values
in q-forms, we can think of this more basic Čech Complex as taking locally constant
functions as its values. The astute reader will notice that the locally constant functions



on Čp(U,Ω0) are exactly the kernel of d : Čp(U,Ω0) → Čp(U,Ω1). We can thus
consider the more basic Čech Complex and de Rham Complex being attached to the
sides of our bigger Čech-de Rham Complex as follows:

...
...

...
...

...

Ω2(M) Č0(U,Ω2) Č1(U,Ω2) Č2(U,Ω2) Č3(U,Ω2) · · ·

Ω1(M) Č0(U,Ω1) Č1(U,Ω1) Č2(U,Ω1) Č3(U,Ω1) · · ·

Ω0(M) Č0(U,Ω0) Č1(U,Ω0) Č2(U,Ω0) Č3(U,Ω0) · · ·

Č0(U,R) Č1(U,R) Č2(U,R) Č3(U,R) · · ·

d d d d

d d d d

d d d d

δ δ δ δ

δ δ δ δ

δ δ δ δ

d

d

d

δ δ δ δ

δ

δ

δ

i i i i

For now, we will not dwell on what the function i is specifically.

5.1 The operator D and the Čech-de Rham Cohomology

Our ultimate goal will be to using the double complex above and the maps δ, i pictured
to form an isomorphism between the cohomologies of the de Rham Complex on a
manifold M (the left most column) and the Čech Complex on U with values in R (the
bottom most row). As such, it will be much easier if we can define a single cohomology
on our double complex to relate to both the Čech and de Rham cohomologies. We will
achieve this by considering the diagonals of our double complex as follows:

Definition 5.1: Let Kn =
⊕

p+q=n

Čp(U,Ωq)

Then we can consider φ ∈ Kn as a vector with n+ 1 components:

φ = (ξ0, ξ1, . . . , ξn) where ξi ∈ Či(U,Ωn−i)

We will define an operator D on this sequence of sets that incorporates both d and δ
in such a way that forms a differential complex.



Definition 5.2: Let φ = (ξ0, ξ1, . . . , ξn) ∈ Kn. We define D : Kn → Kn+1 by

(Dφ)0 = (−1)n · dξ0

(Dφ)i = δξi−1 + (−1)n · dξi for 0 < i < n+ 1
(Dφ)n+1 = δξn

We can think of D and Kn in a more visual way.

ξ0

ξ1

. . .

ξn

±d

±d

±d

δ

δ

δ

Where (ξ0, . . . , ξn) is an element of Kn, d is positive if n is even and negative if n is odd.

Example 5.1: Take our previous example where M is a manifold with good cover
U = {U1, U2, U3}. Let φ = (ξ0, ξ1) ∈ K1 = Č0(U,Ω1)

⊕
Č1(U,Ω0).

Then ξ0 = (ω1, ω2, ω3) ∈ Č0(U,Ω1) where ωi ∈ Ω1(Ui)
and ξ1 = (f12, f13, f23) ∈ Č1(U,Ω0) where fij : Ui ∩ Uj → R is smooth.

ξ0

ξ1

d

d

δ

δ

Then Dφ = (dξ0, δξ0 + dξ1, δξ1) ∈ K2 = Č0(U,Ω2)
⊕

Č1(U,Ω1)
⊕

Č2(U,Ω0) where:

dξ0 =(dω1, dω2, dω3)

δξ0 + dξ1 =(ω2

∣∣
U1
− ω1

∣∣
U2

+ df12, ω3

∣∣
U1
− ω1

∣∣
U3

+ df13, ω3

∣∣
U2
− ω2

∣∣
U3

+ df23)

δξ1 =f23

∣∣
U1
− f13

∣∣
U2

+ f12

∣∣
U3



In order to show that this is a differential operator we need to show that D2 = 0.

Theorem 5.1: The operators d and δ commute

We will leave this as an exercise for the reader.

Proposition 5.2: D2 = 0

Proof. Let φ ∈ Kn and consider (D2φ)i
If i = 0 then (D2φ)0 = (−1)n+1 · d(Dφ)0 = (−1)2n+1 · d2ξ0 = 0
Similarly, if i = n+ 2 then (D2φ)n+2 = δ2ξn = 0
If 0 < i < n then

(D2φ)i =δ(Dφ)i−1 + (−1)n+1 · d(Dφ)i

=δ2ξi−2 + (−1)n · δdξi−1 + (−1)n+1 · dδξi−1 − d2ξi

=(−1)n(δdξi−1 − dδξi−1)

=0

And we therefore have that D is a differential operator on the complex K∗

Example 5.2 (continued): From the previous example suppose M is 3-dimensional
and let ξ0 = (−y ·dz, z ·dx,−x ·dy), ξ1 = (−yz, xy, xz). From the previous calculations
we have that:

Dφ = (ζ0, ζ1, ζ2), where

ζ0 = dξ0 = (−dy ∧ dz,−dx ∧ dz,−dx ∧ dy)

ζ1 = δξ0 + dξ1 = (z · dx− z · dy, y · dz + y · dx, x · dz − x · dy)

ζ2 = δξ1 = xz − xy − yz



Then

D2φ =(−dζ0, δζ0 − dζ1, δζ1 − dζ2, δζ2), where

−dζ0 =− d(−dy ∧ dz,−dx ∧ dz,−dx ∧ dy)

=(0, 0, 0)

δζ0 − dζ1 =(−dx ∧ dz + dy ∧ dz − dz ∧ dx+ dz ∧ dy,
− dx ∧ dy + dy ∧ dz − dy ∧ dz − dy ∧ dx,
− dx ∧ dy + dx ∧ dz − dx ∧ dz + dx ∧ dy)

=(0, 0, 0)

δζ1 − dζ2 =(x · dz − x · dy − y · dz − y · dx+ z · dx− z · dy)

− (z · dx+ x · dz − y · dx− x · dy − z · dy − y · dz)

=0

and δζ2 =0 since Č3(U,Ω0) = 0 (i.e. since there are no 4-fold intersections)

So D2φ = 0 as expected.

6 de Rham’s Theorem

In this section we will prove de Rham’s Theorem.

Theorem 6.1: Let M be a manifold with good cover U = {Uα}α∈A. Then the coho-
mologies of Ω∗(M) and Č∗(U,R) are isomorphic. That is,

H∗dR(M) ∼= Ȟ∗(U,R)

where Ȟq(U,R) denotes the qth cohomology of Č∗(U,R).

The reason that this is such a profound theorem is because we are relating the
geometry of a manifold, with the de Rham complex, to the topology of a manifold,
with the Čech complex with values in R. Also, as we have seen above, we are performing
calculus in one and purely algebra in the other. In order to attempt this proof we will
need one more result.

Theorem 6.2: Let M be a manifold with cover U = {Uα}α∈A. Then the generalised
Mayer-Vietoris sequence below is an exact sequence.

0→ Ω∗(M)
δ−−→ Č0(U,Ω∗)

δ−−→ Č1(U,Ω∗)
δ−−→ Č2(U,Ω∗)→ · · ·



Proof. We begin by noting that by the property that δ2 = 0 we have that

ker(δ ∩ Čq(U,Ω∗)) ⊂ im(δ ∩ Čq(U,Ω∗))

To show the converse (and hence equality) is equivalent to showing that given a p-
cocycle ζ ∈ Čp(U,Ω∗) there exists a ξ ∈ Čp−1(U,Ω∗) such that δξ = ζ. In order
to show this, choose a partition of unity {ρα}α∈A on the cover U. We define the
components of ξ

ξα0···αp−1 =
∑
β∈A

ρβζβα0···αp−1

∣∣
Uα0···αp−1

where we let ζβα0···αp−1 denote (−1)iζα0···αiβαi+1···αp−1 for αi < β < αi+1 or 0 if αi = β
for some i. This should look very reminiscent of the wedge product and follows the
same rules – i.e.

ζαβ = −ζβα (1)

ζαα = 0 (2)

From above, we apply δ to find

(δξ)α0···αp =

p∑
i=0

(−1)i · ξα0···αi−1αi+1···αp
∣∣
Uαi

=

p∑
i=0

(−1)i
∑
β∈A

ρβζβα0···αiαi+1···αp
∣∣
Uα0···αp

But, because δζ = 0

(δζ)βα0···αp =ζα0···αp +

p∑
i=0

(−1)i+1 · ζβα0···αi−1αi+1···αp
∣∣
Uαi

= 0

∴ ζα0···αp =

p∑
i=0

(−1)i · ζβα0···αi−1αi+1···αp
∣∣
Uαi

=(δξ)α0···αp

and hence exactness follows.

From the result above we get exactness in the rows of the Čech de-Rham double
complex. Coupled with the Poincaré Lemma, which gives us exactness along the
columns of the double complex when we considering a good cover, we have the correct
ingredients to prove de Rham’s theorem.



Proof (de Rham’s Theorem). Firstly, letM be a manifold with good cover U = {Uα}α∈A.
We will prove the isomorphism between Hq

dR(M) and Ȟq(U,R) by indirectly proving
isomorphisms

1. Hn
dR(M) ∼= Hn(K∗)

2. Ȟn(U,R) ∼= Hn(K∗)

Where Hn(K∗) is the nth cohomology induced on the sequence K∗ by the differential
operator D from section 4.1— or more explicitly,

Hn(K∗) = ker(D ∩Kn)/im(D ∩Kn).

Let ζ = (ζ0, ..., ζn) ∈ Kn =
⊕

p+q=n

Čp(U,Ωq) be a cocycle. It should be noted that

with the notation above, ζi ∈ Či(U,Ωn−i). We will strive to show that there is some
element λ = (λ1, 0, ..., 0) ∈ Kn such that [ζ] = [λ] and then then the isomorphism in
(1) will follow. Note that since Dζ = 0 we must have that δζn = 0 (directly from
the definition of D). Therefore, by δ-exactness there is a ξn−1 ∈ Čn−1(U,Ω0) such that
δξn−1 = ζn. Now, consider the cocycle

ζ ′ = (ζ0, ..., ζn−1 + (−1)n+1 · dξn−1, 0)

= (ζ0, ..., ζ
′
n−1, 0)

and notice that

ζ = ζ ′ +D(0, ..., 0, ξn−1) =⇒ [ζ] = [ζ ′].

We repeat the process on the cocycle ζ ′. Since Dζ ′ = 0 we have that

(Dζ ′)n = δ(ζ ′n−1) + d(0) = δ(ζ ′n−1) = 0.

Again, by δ-exactness, there is a ξn−2 such that δξn−2 = ζ ′n−1. We construct the cocycle

ζ ′′ = (ζ0, ..., ζn−2 + (−1)n+1 · dξn−2, 0, 0)

= (ζ0, ..., ζ
′
n−2, 0, 0)

which satisfies

ζ = ζ ′′ +D(0, ..., 0, ξn−2, ξn−1) =⇒ [ζ] = [ζ ′′].



After repeating this process n times we will have constructed an element ζ(n) =
(ζ ′0, 0, ..., 0) satisfying

ζ = ζ(n) +D(ξ0, ..., ξn−1) =⇒ [ζ] = [ζ(n)].

Since Dζ(n) = 0 we have that δζ ′0 = 0 and dζ ′0 = 0. Since ζ ′0 ∈ Č0(U,Ωn) and δζ ′0 = 0
it must be the case that ζ ′0 is a global form ω on M . Also, because δ and d commute,
the dω = 0 and hence δ∗ : Hn

dR(M)→ Hn(K∗) is surjective. Injectivity is attained by
noting that given a closed global form ω ∈ Ωn(M), the element φ = (δω, 0, ..., 0) ∈ Kn

is a cocycle since d commutes and given φ = [δω′, 0, ..., 0], [φ] = [φ′] if and only if
[ω] = [ω′]. Hence,

Hn
dR(M) ∼= Hn(K∗)

Note that we only used exactness along the rows above. Because the columns are
exact, due to the Poincaré Lemma and the fact U is a good cover, we can also start
with a cocycle ζ = (ζ0, ..., ζn) ∈ Kn and reduce it to an element ζ(n) = (0, ..., 0, ζ ′n)
satisfying

ζ = ζ(n) +D(ε0, ..., εn−1) =⇒ [ζ] = [ζ(n)].

We will now show that the inclusion map i : Čn(U,R)→ Čn(U,Ω0), which sends real
values to constant functions, such that i∗ : Ȟn(U,R) → Hn(K∗) is an isomorphism.
That is, given an element ϕ with the components ϕα0···αn ∈ R we have

iϕ = (0, ..., 0, ϕ)

a constant function from Uα0···αn → R. It should be noted that i and δ commute which
follows easily from i being an inclusion. Since Dζ(n) = 0, we have that

dζ ′n = 0, δζ ′n = 0.

Since ζ ′n ∈ Čn(U,Ω0) and dζ ′n = 0, ζ ′n is composed of locally constant functions. Thus,
there is an element ϕ ∈ Čn(U,R) such that iϕ = ζ(n). By the commutativity of δ
and i, ϕ must be a cocycle and hence i∗ is surjective. Conversely, given a cocycle
ϕ ∈ Čn(U,R), we note that iϕ = (0, ..., 0, ϕ) is a cocycle under D since

(−1)n · dϕ = 0, δϕ = 0.

This gives us that i∗ is a bijection and hence,

Ȟn(U,R) ∼= Hn(K∗)

completing our proof.



7 Appendix

7.1 Proof of the Snake Lemma

Proof. We have already proven the relevant properties of f ∗ and g∗ so it simply remains
to show that we can find a function ∂ : Hq(C)→ Hq+1(A) such that this sequence of
cohomology classes is exact.

...
...

...

0 Aq Bq Cq 0

0 Aq+1 Bq+1 Cq+1 0

...
...

...

dA dB dC
f g

dA dB dC
f g

dA dB dC

We want to send each closed element of Cq to a closed element in Aq+1 and then show
that this map, ∂, is well defined for their associated cohomology classes. So let c ∈ Cq,
a closed q-form. By the surjectivity of g there is an element b ∈ Bq such that g(b) = c.
Then,

g(dBb) =dCg(b)

=dCc

=0

so db ∈ ker(g) = im(f). Therefore there is an element a ∈ Aq+1 such that f(a) = dBb.
Clearly a is closed since f(dAa) = dBf(a) = d2

Bb = 0 and by the injectivity of f ,
dAa = 0. To show this map is well defined, suppose [c′] = [c] for some c′ ∈ Cq or
equivalently c′ = c + dω for some ω ∈ Cq+1. By surjectivity, there is a b′ ∈ Bq such
that g(b′) = c+ dCω. In fact, since g(b′ − b) = dCω, we have that g(ψ) = ω and hence
g(b′) = g(b+ dBψ) = c′ for some ψ ∈ Bq−1. Note too, that since

g(dBb
′) =dCg(b′)

=dCc+ d2
Cω

=0



and im(f) = ker(g), there is an element a′ ∈ Aq such that

f(a′) = dBb
′ = d(b+ dBψ)

= dBb+ d2
Bψ

= dBb

= f(a)

Thus, by the injectivity of f , we have that a = a′ and therefore [a] = [a′] which implies
that ∂ : Hq(C)→ Hq+1(A) is well defined.

To show exactness we just need to show that ker(f ∗) = im(∂) and ker(∂) = im(g∗). To
show ker(f ∗) = im(∂), consider [a] ∈ ker(f ∗) for some a ∈ Aq+1. If f ∗([a]) = [0] then
we must have that f(a) = dψ for ψ ∈ Bq. Applying g to f(a) we see that

g(dBψ) = dCg(ψ) ∈ Cq+1 for ψ ∈ Cq.

It follows that

[a] = ∂([g(ψ)]) =⇒ ker(f ∗) ⊂ im(∂).

Conversely, if we let [a] ∈ im(∂) where a ∈ Aq+1, then [a] = ∂([c]) for some closed
c ∈ Cq. We have shown previously that if [a] ∈ im(∂) then f(a) = dBb. It then follows
that

f ∗([a]) = [f(a)] = [dBb] ≡ [0] =⇒ ker(f ∗) ⊃ im(∂) =⇒ ker(f ∗) = im(∂)

Now, to show ker(∂) = im(g∗), consider [c] ∈ im(g∗) where c ∈ Cq. By the construction
of ∂, if ∂([c]) = [0] then 0 ∈ Aq+1 satisfies:

f(0) = db ∈ Bq+1 (3)

g(b) = c ∈ Cq (4)

Thus, by (2) we have that c ∈ im(g∗), implying that ker(∂) ⊂ im(g∗). Similarly, if
[c] ∈ im(g∗) then dCg(b). Since f(0) = 0 = dCg(b) where 0 ∈ Aq+1 and we have that
∂([g(b)]) = [0]. So we have that ker(∂) ⊃ im(g∗) and therefore

ker(∂) = im(g∗)

Thus the sequence is exact.
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