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Abstract 

The following report details the research carried out under the AMSI summer 
research scholarship in the summer of 2013/2014. A partial differential equation, a 
generalization of the Sinh-Gordon equation with 3 singularities, was solved 
numerically on the punctured Riemann sphere using the method of Green’s 
Functions for different values of parameters. 
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Introduction 

 Mathematical physics is a subject that often weaves together diverse areas 

of mathematics as it attempts to solve physical problems. Recently, a link was 

found between completely integrable systems and the theory of P.D.E.s (see [1]) 

which sparked the student’s interest in such classes of PDEs and hence served as 

the impetus for this enquiry. The goal of the research was to consider an important 

singular PDE and develop methods to solve it numerically. The method is one 

based on Greens functions and differentiation by parts, involving an iterative 

formula that would eventually converge to the solution.  

In this report, I will first give a full overview of the specific problem 

considered. I will then present the iterative formulae used, and describe how the 

problem was solved; briefly touching on the derivation. Then I will move onto the 

practical considerations of implementing the procedure outlined in the previous 

section. Finally, there will be a results section, where a typical solution will be 

presented. 

Problem Outline 

 The equation that we would like to solve is: 

1

4
∆𝑓(𝒙) = 𝑒2𝑓 − 𝜌4𝐵(|𝒙|)𝑒−2𝑓                             (1) 

where: 

𝐵(|𝒙|) =
|𝒙1 − 𝒙2|2𝑎3|𝒙2 − 𝒙3|2𝑎1|𝒙1 − 𝒙3|2𝑎2

|𝒙 − 𝒙1|2−2𝑎1|𝒙 − 𝒙2|2−2𝑎2|𝒙 − 𝒙3|2−2𝑎3
 

We work in the real plane with 3 punctures at the singular points. The 𝒙𝑖 (𝑖 =

1,2,3) are specific points (the locations of the singularities) and the 𝑎𝑖 are 

parameters satisfying the conditions:  

𝑎1 + 𝑎2 + 𝑎3 = 2 

0 < 𝑎𝑖 < 2 

𝜌 is a positive parameter that can in theory vary from zero to infinity, but in 

practice 𝜌 = 3/10 is already considered a large value.  
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 There is an interesting interpretation of the solution function to the system 

(1). The solution, 𝑓, can be regarded as a metric if viewed as a function on the 

Riemann sphere that has been stereographically projected onto the complex plane 

(which is equivalent to the real plane we are working on). To illustrate this, a 

solution to 

1

4
∆𝑓(𝒙) = −𝑒2𝑓 

with appropriate conditions at infinity will be the usual metric 𝑆𝑖𝑛(𝜃)𝑑𝜃𝑑𝜑 with 

constant positive curvature on the sphere, whereas a solution to 

1

4
∆𝑓(𝒙) = 𝑒2𝑓 

again with certain asymptotic conditions will be a metric with constant negative 

curvature on the sphere. Our function satisfies the asymptotic conditions: 

𝑓(𝒙) ≈ −2𝐿𝑜𝑔(|𝒙|) + 𝑓∞  |𝒙| → ∞                             (2.1) 

𝑓(𝒙) ≈ 2𝑚𝑖𝐿𝑜𝑔(|𝒙 − 𝒙𝑖| + 𝑓𝑖    |𝒙 − 𝒙𝑖| → 0            (2.2) 

𝑚𝑖 ≡ 𝑝𝑖 −
1

2
 

and has a rather more complicated interpretation, but still, that of a metric. 

  

 There are certain natural questions that arise when one is confronted with 

such a system. Is the problem well posed? In other words does there exist a unique 

solution and to what class of functions does it belong? The answer to these 

questions can intuitively be partially found by means of a detour into the theory of 

electrostatics. 

 In 2 dimensions, an analogy to the well-known Coulomb’s Law states that the 

electrostatic attraction between two point charges will be proportional to the 

inverse of the distance between them, or 

𝑬~
1

𝑟
𝒓̂ 

The potential difference of two point charges will thus be a logarithmic function 

𝑉~𝐿𝑜𝑔(|𝑟|) 

We will also need the differential equation that the potential satisfies 
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∆𝑉(𝒙) =
1

𝜖0
𝜌(𝒙) 

Here, 𝜌(𝒙) is the charge density. 

 Now let’s return to our original problem. The equation (1) along with the 

asymptotic conditions (2) can be interpreted as the electrostatic problem of 

finding the potential energy of a charge distribution 𝑒2𝑓 − 𝜌4𝐵(|𝒙|)𝑒−2𝑓 and 3 

point charges placed at 𝒙1, 𝒙2, 𝒙3  along with a specification of the field at infinity. 

If the right hand side of (1) was not dependent on the function 𝑓 itself, this would 

obviously have a unique, continuous solution, since such an arrangement can be 

constructed in the laboratory (albeit a 2 dimensional one). The only difficulties 

that arise is that the charge distribution depends on the field itself, 𝑓, and the 

rational function 𝐵(|𝒙|) has singularities. We note that, by substituting the 

appropriate asymptotic expressions into the right hand side of equation (1), it can 

be seen that 𝐵(|𝒙|) in fact weakens the singularity of the right hand side. 

Therefore, it is unlikely that this term would make the problem malicious. So the 

electrostatic interpretation goes far into addressing the issue, though not 

completely. However, there are other physical interpretations that ensure the well 

– posed nature of our problem. 

Solution Method 

As mentioned in the previous section, the problem under consideration is 

very similar to the electrostatic problem of finding the potential from a given 

charge distribution. Therefore, in deriving the solution, mathematical methods are 

used that are common in electrostatics, including various Green’s theorems 

(whose analogue in electrostatics is Gauss’ Law) and the method of Greens 

functions. In particular, we use an iterative approach that was derived using such 

mathematical methods. The appendix of any book on partial differential equations 

such as [2] can be consulted to review the basic multidimensional calculus facts (in 

particular the Green’s theorems) used extensively in this derivation.  

We give a sample of how the main recurrence was derived, so that the 

reader may get a feel for what is involved.  
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Let us first introduce the Green’s function for the operator 
1

4
∆ 

𝐺(𝒙 − 𝒙′) =
2

𝜋
𝐿𝑜𝑔(|𝒙 − 𝒙′|) 

 

which satisfies 

1

4
∆𝐺(𝒙 − 𝒙′) = 𝛿(𝒙 − 𝒙′) 

and consider the integral expression, where the domain of integration is the whole 

real plane 

1

4
∫ 𝐺(𝒙 − 𝒙′)∆𝑓𝑑𝑉 = ∫ 𝐺(𝒙 − 𝒙′)( 𝑒2𝑓 − 𝜌4𝐵(|𝒙′|)𝑒−2𝑓)𝑑𝑉′  

Using a Green’s theorem, we can transfer the Laplacian from 𝑓 to the Green’s 

function. This will yield some boundary terms but, most importantly, will result in 

the convolution of 𝑓 with the function 𝛿(𝒙) which simplifies to 𝑓(𝒙). Rearranging 

to make 𝑓 the subject, and using the asymptotic boundary conditions for  𝑓 to 

evaluate the boundary terms, being very careful to note the contributions from the 

singular points 𝒙𝑖, yields: 

𝑓(𝒙)

= ∫ 𝐺(𝒙 − 𝒙′)(𝑒2𝑓(𝒙′) − 𝜌4𝐵|𝒙′|𝑒−2𝑓(𝒙′))𝑑𝑉′ + 𝑓∞ + ∑ 2𝑚𝑖𝐿𝑜𝑔|𝒙 − 𝒙𝑖|      (3)

3

𝑖=1

 

So the solution function is a fixed point of the transformation given by (3). If we 

assume that in some domain, (3) is a contraction mapping and we define 

𝑓𝑛 = ∫ 𝐺(𝒙 − 𝒙′)(𝑒2𝑓𝑛−1 − 𝜌4𝐵|𝒙′|𝑒−2𝑓𝑛−1)𝑑𝑉′ + 𝑓𝑛−1,∞ + ∑ 2𝑚𝑖𝐿𝑜𝑔|𝒙 − 𝒙𝑖|     (4)

3

𝑖=1

 

With an appropriate choice of  𝑓0, we will have that     𝑓𝑛 → 𝑓 as 𝑛 → ∞ where 𝑓 is 

the solution to (1). To avoid confusion, we state explicitly that in the above 

expression 𝑓𝑛−1,∞ denotes a constant and 𝑓𝑛−1 a function. 

There are other iteration formulas for the constants 𝑓
∞

, 𝑓
𝑖
 (𝑖 = 1,2,3) and 

we omit a discussion of these here since they are derived in a similar fashion. A 

more complete step-by-step overview of the method used is included in the 

appendix. 
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In summary, to solve the system (1), we start with a “guess” solution, 𝑓0, 

and use the recurrence relation (3) to find 𝑓𝑛 which will either converge to our 

solution or diverge depending on our choice of 𝑓0.  

Numerical Implementation 

 To carry out the above transformations, we need to define an appropriate 

(bounded) domain on which to act out transformations. We choose a ball of radius 

𝑅 with small punctures at the singularities 

𝐷 = 𝐵𝑅(0)/{𝐵𝜀(𝒙1) ∪ 𝐵𝜀(𝒙2) ∪ 𝐵𝜀(𝒙3)} 

where 𝜀 > 0 is small. Since the domain of integration in (4) is the whole real plane, 

we numerically integrate over 𝐷 and analytically add the extra contributions from 

𝐷𝑐 using the asymptotic expansions in (2). The mesh we use is an adaptive 

triangulation. Since the function has singularities near 𝒙𝑖, after a set number of 

iterations we refine the mesh where the function is large (and hence where the 

errors are likely to be most severe). Typically, this means that after a few such 

refinements the mesh is dense near the singularities 𝒙𝑖. The image below shows 

the triangulated domain, and clearly displays the increase in mesh density close to 

the singularities. 𝜀, has been chosen to be large for the clarity of the image, and it in 

no way reflects actual values of 𝜀 used in the calculations. 

 

Fig 1. An example of the 
domain over which the 
numerical calculations were 
performed as well as a typical 
mesh of the domain. 
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 A free open source meshing software, GMSH, was used which can be found 

by the link given in [3], and the programing platform was Fortran. Additionally, 

parallel programming techniques were implemented to ensure our developed 

software could be run quickly and efficiently on multiple cores. The calculations 

were done on the NCI supercomputer located at the Australian National University. 

 

 There are some technical issues regarding the implementation of the 

algorithm described by equation (4). Below, once such issue is detailed so that the 

reader may get an idea of the typical problems encountered in numerical methods. 

The choice of initial function, 𝑓0, greatly determines the convergence of the 

system and as the parameter 𝜌 increases, a simple guess of 𝑓0 is inadequate. The 

reason behind this is due to the singularities inherent in the rational function 𝐵|𝒙′|. 

Although we mentioned previously that this term in fact tempers the singularities 

at 𝒙𝑖, if 𝑓0 is defined as an arbitrary initial function, say a constant function, the 

solution quickly diverges for relatively small values of 𝜌. An explanation of this is 

that the function 𝑓0 has no singularity itself which, when coupled with 𝐵|𝒙′|, 

creates a weak singularity. This problem can be solved by ensuring the initial 

function 𝑓0 already has singularities at 𝒙𝑖, and practically this means solving the 

system (1) for 𝜌 = 0 and then using this solution as the initial function for the 

subsequent calculations when 𝜌 is increased. 

Results 

 The equation (1) was solved for various values of 𝜌 and fixed values of    

𝑎𝑖 =
2

3
  and 𝑝

𝑖
=

1

12
    (𝑖 = 1,2,3). A plot of the solution is given on the next page. 

Note the logarithmic singularities where the mesh density is high and the function 

approaches infinity. Convergence was displayed, and certain analytic checks 

confirmed that this in fact was the sought after solution. 

 
 
 
 



 

8 
 

 

Conclusion 
Over the summer of 2013/2014, a method was developed for the solving of a 

singular partial differential equation. The method was successful and a numerical 

result was obtained. Further research would involve solving such equations with 

more singularities and solving more general equations, as well as optimizing the 

numerical calculations.  

I thank AMSI for providing me with the scholarship and the opportunity to 

present my findings in the Big Day In. I also thank my supervisor Vladimir 

Bazhanov, who was always approachable, Vladimir Mangazeev, who helped me 

reach the level I am at now and Andrey Bliznyuk for his kind assistance with the 

programming implementation. 

Fig 2. A plot of the 
solution function 
over the real plane 
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Appendix 
 
Below we give a complete list of the formulae and a breakdown of the recurrence 
procedure used. 
 

1. Define initial guess function 𝑓
𝑜
 and initial guess constants 𝑓

∞
, 𝑓

1
, 𝑓

2
, 𝑓

3
. 

2. Compute, with 𝑛 = 1, 

𝜑
𝑛

= ∫ 𝐺(𝒙 − 𝒙′)(𝑒2𝑓𝑛−1 − 𝜌4𝐵|𝒙′|𝑒−2𝑓𝑛−1)𝑑𝑉′ + 𝑓
𝑛−1,∞

+ ∑ 2𝑚𝑖𝐿𝑜𝑔|𝒙 − 𝒙𝑖|     
3

𝑖=1

 

3. Compute for  𝑓
𝑛,∞

 , (with 𝑛 = 1) 

𝑓
𝑛,∞

=
1

2
𝐿𝑜𝑔(

𝐸 + √𝐸2 + 4𝐷𝐶

2𝐶
) 

𝐶 = ∫ 𝑒2𝜑𝑑𝑉 

𝐷 = 𝜌4 ∫ 𝑒−2𝜑𝑑𝑉 

𝐸 = 𝜋(−(𝑚1 + 𝑚2 + 𝑚3) − 1) 

Note that all quantities, 𝐸, 𝐶, 𝐷, are positive so 𝑓
𝑛,∞

 is well defined. 

4. Compute for 𝑓
𝑛,𝑖

 (with 𝑛 = 1, 𝑖 = 1,2,3). 

𝑓
𝑛,𝑖

= G𝑖(𝜑, 𝑓
𝑛−1,1

, 𝑓
𝑛−1,2

, 𝑓
𝑛−1,3

) 

where G𝑖 is a rather complicated function that we would prefer to omit. 

5. Compute for 𝑓
𝑛

  (𝑛 = 1) 

𝑓
𝑛

= 𝜑
𝑛

+ 𝑓
𝑛,∞

 

6. Repeat steps 2-5 until 𝑓
𝑛

 becomes a fixed point. 
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