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1. Background 
 
In a wide range of emerging fields, particularly within medicine, education and 
psychology, an important statistical design is repeated measures. Repeated measures 
is a design that uses the same individuals throughout the course of the experiment. 
There are two primary methods for conducting a repeated measures study. In the first 
situation, the individuals perform a series of tests or measurements under different 
conditions. Here, the results are considered to be independent of time and if multiple 
tests are conducted, the individual results on one test do not influence the results on 
any other tests. The second major use for repeated measures is for a longitudinal 
study. A longitudinal study is where the same measurements are taken from the same 
individuals over a period of time, which can be hours, weeks, months or even years, 
depending on the study in question. The purpose of a longitudinal study is to measure 
change over time so as to, for example, measure the short and long term effectiveness 
of a new treatment for people with high blood pressure. 
 
 A key aspect of a repeated measures design is that since the same individuals 
are being used throughout, there will be multiple observations for each individual and 
as such, any given observation for each individual won’t be independent of the other 
measurements for that same individual. Consequently, there will be a correlation 
structure between the observations for each individual. Correlation is a statistical 
measure of how strongly variables are associated with each other, either positively or 
negatively. For longitudinal studies, each time point acts as a variable and as such, the 
response for each individual at each time point is correlated with the response for 
each individual at the other time points.    
 
 Correlations themselves are derived from the variances and covariances of the 
error terms for each individual where for variables X, Y; 
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 Correlation(X, Y) = p(X, Y) = 
               

                        
  = 

   

   
    

 
    

 
 Throughout this paper, covariance matrices will be used to represent the 
covariance structures and hence the correlation structures using the following 
assumptions for simplicity. Assume that there are three responses per individual. Let ∑ 
denote the covariance of the error term for each individual. Then the general 
covariance structure is a symmetric matrix such that  
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2. Methods of Analysis 
 
 There are a wide range of possible statistical methods that can be used to 
analyse a longitudinal study. This paper will focus on four such methods. Firstly, we will 
consider Multiple Linear Regression, a popular model for analysis but one which is 
completely unsuited to repeated measures design. Secondly we will consider a 
commonly used model for repeated measures design, the Repeated Measures ANOVA 
(RMANOVA) and note its weakness when considering a longitudinal study. Finally, we 
will consider two more recent methods, Generalised Least Squares (GLS) and Linear 
Mixed Effects (LME), which allow different correlation structures to be chosen. 
 

Assume that for the ith individual within the longitudinal study that  
 

Yi =      
  
  
  

      = Xβ +      

  
  
  

 

 
where Yi is the response vector, Xβ is the matrix of variables and ε denotes the 
variance of each response.  
 

Multiple Linear Regression has two major assumptions. Firstly it assumes that 
observations are independent within and across individuals and secondly it assumes 
constant variance within and across individuals. These two assumptions cause the 
following covariance structure to arise. 

 

∑ =   σ2    
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     is the correlation structure.  
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 The reason Multiple Linear Regression is not suited to repeated measures 
design is that as shown above, the assumptions made result in zero correlation 
between variables for each individual. 
 
 Repeated Measures ANOVA (RMANOVA) also has two major assumptions, 
namely equal variance and equal covariances. These assumptions lead to the following 
covariance structure. 
 

 ∑ =   σ2    

   
   
   

    where        .   

 
Unlike the Multiple Linear Regression model, the RMANOVA model does 

include a correlation coefficient. RMANOVA is widely used for repeated measures 
design, in particular for time independent studies where it is reasonable to assume 
that correlation in constant. However, in longitudinal studies, the constant correlation 
may not be as reasonable an assumption as people change over time, irrespective of 
any treatment they might be undergoing. Consequently, a correlation structure which 
has smaller magnitudes of correlation for time points which are further apart may be 
more appropriate. 
 
 Generalised Least Squares (GLS) has the same model structure as shown earlier 
for the Multiple Linear Regression, however, it has some key differences in 
assumptions. Firstly, it allows for errors to be correlated and for variances to be 
unequal and lastly it allows different correlation structures to be chosen. These 
changes in assumptions fix the issues associated with using Multiple Linear Regression 
for repeated measures designs. 
 
 Linear Mixed Effects Model (LME) is a model containing both fixed and random 
effects where, for the ith individual; 

Yi = Xβ + Ziµi + εi  
where Ziµi is the matrix of random effects for each individual. As with the GLS, 
different correlation structures can be chosen for the LME. 
 
 
 

3. Correlation Structures 
 
 There are a wide range of different correlation structures that can be chosen 
for the GLS and MLE, however, in this paper we will be focusing on three of the most 
widely used. 
 

 (i) Compound Symmetry:  σ2    
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The GLS, equipped with Compound Symmetry is an equivalent model to the 

Repeated Measures ANOVA shown earlier. The LME with a random intercept and 
Compound Symmetry is equivalent to the GLS with Compound Symmetry up until 
degrees of freedom. 
 

 (ii) AR(1):     σ2    

    

   

    

    

  
 Since |p|   , the AR(1) correlation structure allows for a lower correlation 
between more distant events when time is a variable, such as for longitudinal studies. 
This is a more intuitive structure than then compound symmetry structure given what 
we know about how people change over time. 
 
 
 

 (iii) Unstructured:     

  
       

     
    

        
 

     

 
  
 An unstructured correlation structure allows for every variance and each 
unique covariance to be different, noting that this is still a symmetric matrix. As such, it 
has no limitations and is consequently very flexible. One drawback of the unstructured 
correlation structure is that it can lead to computational issues and in situations where 
there are a small number of observations, it is sometimes unable to obtain results at 
all due to the large number of parameters needing to be evaluated. 
 
 

4. Simulation 
 
  
 In order to assess how sensitive each of the various methods are to different 
correlation structures, a simulation was coded in R to assess the coverage probability 
of the 95% confidence interval. Coverage probability denotes the proportion of 
occasions that the true value, in this case 0, lies within the confidence interval. This 
simulation consisted of four observations each for twenty individuals, where by the 
data produced arose from a multivariate normal distribution with the AR(1) structure 
used for the covariance structure of the error terms. In each instance, the simulation 
was run 1000 times in order to obtain the asymptotic approximation for the true 
coverage probability. Each set of 1000 runs was then repeated ten times and averaged 
to obtain the final coverage probability. 
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5. Results   

 0.2  0.5  0.8  

Multiple Linear Regression  0.881 (min 0.857) 0.802 (0.782) 0.716 (0.674) 

GLS-Compound Symmetry  0.937 (0.932) 0.930 (0.919) 0.934 (0.926) 

GLS-AR(1)  0.932 (0.919) 0.931 (0.916) 0.934 (0.923) 

GLS- Unstructured 0.930 (0.918) 0.928 (0.917) 0.932 (0.921) 

LME-Compound Symmetry*  0.955 (0.948) 0.945 (0.937) 0.950 (0.939) 

LME-AR(1)*  0.958 (0.949) 0.957  (0.941) 0.954 (0.940) 

LME- Unstructured * 0.938 (0.925) 0.936 (0.922) 0.935 (0.924) 

Table 1. Coverage probability for treatment effect using data with AR(1) 
covariance structure with p = {0.2, 0.5, 0.8}. LME models used random intercept, 
grouped by individual. 

 
* Note, the LME models had significant issues obtaining confidence intervals 

(CI). The Compound Symmetry model failed to obtain a CI on 0.9% of occasions, the 
AR(1) model on 24.8% of occasions and the Unstructured on 50.1% of occasions. The 
most likely explanation for this is a convergence issue within the LME function in R, 
with the function unable to always converge within the allowed number of iterations.  

 
From Table 1 above, the Multiple Linear Regression model performed poorly as 

expected, especially as the correlation coefficient moved further away from zero. All 
three of the GLS models performed quite well with a coverage probability around 93%. 
Interestingly, there was little difference in choosing the wrong correlation structure 
which suggests that the GLS model is not sensitive to correlation structure 
misspecifications.  The LME models with Compound Symmetry and AR(1) performed 
excellently, with a coverage probability hovering around the desired 95% range. The 
unstructured LME model, however, performed slightly worse than the other two 
models which was something of a surprising result. 

 
As noted earlier on, the GLS with compound symmetry and the LME with the 

random intercept and compound symmetry are equivalent models up to degrees of 
freedom (df). Both models produced the same β coefficients and the same standard 
error values but due to a difference in how the two models determine the degrees of 
freedom, there is a difference in the coverage probability as shown in Table 1. More 
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specifically, the degrees of freedom were calculated as follows, noting that there are 
twenty individuals who each have four observations for a total number of eighty 
observations. 

GLS (df): 80 – Number of variables (time points) = 80-4 = 76. 
LME(df): 80 – Number of random intercepts (1 per individual, taken at time=0) 

– number of remaining variables (time points not including time = 0) = 80-20-3 = 57. 
As 57 and 76 are both not a low magnitude and the difference of 19(df) is not 

that significant, the resulting confidence intervals are of a similar width and hence, the 
coverage probabilities are quite similar as shown in Table 1. For a more complicated 
model ,however, for example an LME that had both a random intercept and a random 
slope coefficient, the degrees of freedom would be 18 (20 individuals -2 variables), 
which would have a greater effect on the difference in coverage probability as, all  
thing being equal, a smaller number of degrees of freedom creates a wider confidence 
interval and thus a higher coverage probability.  
 
 

6. Conclusion 
 
 The aim of this project was to examine various correlation structures and 
develop R code for the various methods of analyzing longitudinal data in order to 
determine how sensitive each method was to misspecifications in the correlation 
structure. The major focus of the project was writing code in R to run the simulation 
required to complete the examination of the various methods. 
 The simulation showed that Multiple Linear Regression model, which assumes 
no correlation within and between groups is a poor method of analysing longitudinal 
data. The Generalised Least Squares (GLS) showed little change to correlation structure 
misspecifications with the compound symmetry structure (equivalent to running the 
RMANOVA) performing as well as the AR(1) model which was the correct model. 
Likewise for the Linear Mixed Effects (LME) model, using a random intercept with 
compound symmetry yielded similar results to the correct AR(1) model. 
 Whilst the GLS and MLE aren’t particularly sensitive to correlation 
misspecifications on this relatively simple model, there is still the primary issue of 
justification. As statisticians working in fields where the majority of collaborators are 
not statisticians, it is imperative that we can justify why we’re choosing a particular 
model or a particular correlation structure, even if not doing so would lead to the 
same end conclusion by non statisticians. 
 Complications with the LME model proved to be a significant hurdle in the 
project and with more time, a greater understanding of why confidence intervals were 
not always able to be calculated may be forthcoming, and possible changes to the LME 
model in R in order to solve the issue might be developed. 
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