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Abstract

Many problems which arise in applied mathematics are highly non-linear and
thus can be difficult or impossible to solve analytically. The Homotopy Analysis
Method (HAM) is a semi-analytical technique used to solve differential equa-
tions, in particular non-linear and partial. The technique utilises homotopy (the
concept of deforming one continuous equation into another) in order to gener-
ate a convergent series of linear equations from non-linear ones. HAM was first
proposed by Shijun Liao of Shanghai Jiaotong University in 1992 and since then
has been widely implemented for solving non-linear differential equations in ar-
eas ranging from science to finance. In this paper we go about comparing HAM
with other previously well established methods for solving differential equations
including the Taylor series and Padé approximation by solving a non-linear dif-
ferential equation proposed by Liao with each method. This was done in order
to gain a better understanding of the effectiveness of HAM and determine if the
method is worthy of its acclaim.
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1 Homotopy Analysis Method (HAM)

HAM is an analytical technique used to solve non-linear/partial differential equations
by using homotopy (deformation of one continuous function into another) to generate
a series of convergent linear equations from a non-linear one. HAM was first developed
in 1992 by Liao and was further modified in 1997 to include the auxiliary parameter
h̄. This non-zero parameter allows control over the convergence of the series. Because
HAM is based off the concept of homotopy we have the freedom to choose the initial
approximation of the solution, the auxiliary linear operator and the convergence control
parameter, h̄. This property sets HAM apart from other methods as we can choose
the equation-type of the high order deformation equation and the base functions of its
solution.

1.1 Basic Idea

Here we give a brief derivation of HAM for solving a non-linear differential equation.
If we have the non-linear differential equation:

N [f(t)] = 0 (1)

where N is a non-linear operator, t is the independent variable and f(t) is an
unknown function. We can construct the homotopy,

H[φ(t; q), f0(t), h̄, q] = (1− q)L[φ(t; q)− f0(t)]− qh̄H(t)N [φ(t; q)] (2)

where p ∈ [0, 1] is the embedding parameter, h̄ is a non-zero auxiliary parameter,
H(t) is an auxiliary function (H(t) 6= 0), L is an auxiliary linear operator, f0(t) is
an initial approximation of f(t) (which satisfies the initial conditions) and φ(t; q) a
function which also must satisfy the initial conditions. Setting the homotopy equal to
zero, we construct the zero-th order deformation equation:

(1− q)L[φ(t; q)− f0(t)] = qh̄H(t)N [φ(t; q)] (3)

whose solution transforms continuously with respect to q. When q = 0 it follows
that

L[φ(t; 0)− f0(t)] = 0 (4)

Now from the definitions of L[f(t)], φ(t; q) and f0(t)



φ(t; 0) = f0(t) (5)

Similarly when q = 1,

N [φ(t; 1)] = 0 (6)

Since φ(t; q) must satisfy the initial conditions of the differential equation, from 6
it follows that φ(t; 1) = f(t). From this we can see that φ(t; q) varies continuously
from the initial approximation f0(t) to the solution as the q increases from 0 to 1. As
previously stated, we wish to take the non-linear equation and form a series of linear
convergent approximations. We define the mth order linear approximation fm(t) given
as

fm(t) =
1

m!

∂mφ(t; q)

∂qm

∣∣∣∣
q=0

(7)

which is called the mth-order deformation derivative. Now we can expand φ(t; p)
using the Taylor series with respect to q:

φ(t; q) = φ(t; 0) +
∞∑
m=1

1

m!

∂mφ(t; q)

∂qm

∣∣∣∣
q=0

qm (8)

Thus using equation 7 and φ(t; 0) = f0(t), the power series becomes

φ(t; q) = f0(t) +
∞∑
m=1

fm(t)qm (9)

If the auxiliary linear operator, initial guess, h̄ and the auxiliary function are chosen
so the series converges at q = 1,

f(t) = f0(t) +
∞∑
m=1

fm(t) (10)

We now go about finding an expression for the fm(t) by differentiating equation 3
with respect to q:

(1− q)
(
∂φ(t; q)

∂q

)
− L(φ(t; q)− f0(t)) = h̄H(t)N [φ(t; q)] + qh̄H(t)

∂N [φ(t; q)]

∂q
(11)

By setting q = 0 and again using equation 7,



L[f1(t)] = h̄H(t)N [f0(t)] (12)

That is, the linear value of f1(t) can be obtained from a non-linear transformation
of f(t). By extending this process we can get

L[fm(t)− fm−1(t)] = h̄H(t)
1

(m− 1)!

∂m−1N [φ(t; q)]

∂qm−1
|q=0 (13)

By rearranging this equation and introducing the term χ(m)

χm =

{
0 if n ≤ 1

1 if n > 1
(14)

we can form the mth order deformation equation:

L[fm(t)− χ(m)fm−1(t)] = h̄H(t)
1

(m− 1)!

∂m−1N [φ(t; q)]

∂qm−1
|q=0 (15)

which is true for m ≥ 1. Rearranging

L[fm(t)] = χ(m)fm−1(t) + L−1
{
h̄H(t)

1

(m− 1)!

∂m−1N [φ(t; q)]

∂qm−1
|q=0

}
(16)

where L−1 is the inverse of the linear operator (i.e. inverse of differentiation is
integration). The solution to u(t) can be expressed as

f(t) =
∞∑
m=0

fm(t) (17)

which is valid where ever the solution converges.



2 Taylor Series Approximation (BEEF)

The Taylor series is a representation of a function as a power series whose terms
are calculated from the function’s derivatives at a particular point. By combining a
Mclaurin series, a special case of the Taylor series centred at 0, with another Taylor
series we can form a series solution of an ODE.

We consider the initial value problem (IVP) f ′(t) = y with the initial condition
f(0) = f0. First we go about finding an approximation for f(t) centred at a = 0. First
we form the set of derivatives by taking up to the mth derivative of f(t){

f ′(t), f ′′(t), f ′′′(t), . . . , f (m)(t)
}

(18)

By evaluating each derivative at t = 0 using the initial value f0, we then can form
the set {

f0, f
′(0), f ′′(0), f ′′′(0), . . . , f (m)(0)

}
(19)

Using this set of derivatives and we can form a series solution for f(t) using the
Mclaurin series:

f(t) =
m∑
i=0

f (i)(0)

i!
(t)i

= f0 + f ′(0)t+
f ′′(0)

2
t2 + . . .+

fm(0)

m!
tm

(20)

While this series can give results of a reasonable accuracy around t = 0 when taking
a sufficient number of terms, we may wish to centre the series around non-zero values.
However this requires a value of f(a) which we can approximate using another Taylor
series. By taking out previously determined set of derivatives, we form:

f(a) =
∞∑
n=0

f (n)(0)an

n!

= f(0) + f ′(0)a+
f ′′(0)a2

2
+ ...

(21)

Thus by taking the derivatives of f(a) to get f ′(a), f ′′(a), . . . we can substitute
them into a general Taylor series to form a general solution for the BEEF method



f(t) =
n∑
j=0

m∑
i=0

f (i)(0)ai

i!
(t− a)j (22)

when taking m terms of the inner series and n terms of the outer series.

If we consider the BEEF solution to be of polynomial form f(t) =
∑∞

i=0 cit
i then

we have the expression for ci when taking m outer series terms

ci =
m∑
n=i

1

n!

(
n

n− i

)
f (n)(a)(−a)n−i (23)

which will be useful when comparing the series solution of BEEF to that of the
HAM solution.



3 Padé Approximations

One method of improving the accuracy of a function approximation by using a rational
function approximation. The Padé approximate is a method developed around 1890
by French mathematician Henri Padé used to give a better approximation given a
truncated power series. The Padé approximate may converge even when the power
series does not.

If we consider a Taylor polynomial of f(t) truncated to m terms, Pm(t), then

f(t)− Pm(t) = O(xm+1) (24)

We define the rational function R(t)

R(t) =

∑m
i=0 ait

i

1 +
∑n

j=1 bjt
j

(25)

and say R(t) is of the degree N = m + n. Since R(t) has m + n + 1 parameters
then we can expect:

f(t)−R(t) = O(tm+n+1) (26)

Since R(t) is a ‘richer class’ of function than a polynomial (rational function with
q(t) = 1), a Nth order Padé approximate will be at least as good as a Nth degree
polynomial. Through careful selection of m and n we can expect this error to decrease.
To find the coefficients ai and bj we equate Pk(t) to R(t) and solve the resulting system
of linear equations where the coefficients of Pm(t) are given by

ci =
f (i)(0)

i!
(27)

so it follows that

c0 + c1t+ c2t
2 + ... =

a0 + a1t+ a2t
2 + ...+ antn

1 + b1t+ b2t2 + ...+ bmtm
(28)

We can then equate coefficients where

a0 = c0

a1 = b1c0 + c1
...

an = bmcn−m + ...+ b1cn−1 + cm

(29)



cn+1 + b1cn + ...+ bmcn−m+1 = 0

...

CN + b1cN−1 + ...+ bmcN−m = 0

(30)

Thus forming the Padé approximation. A more specific example of this process is
given in section 4.5.



4 Non-linear example

Here we are going to be examining the non-linear ordinary differential equation as
given in the ‘Beyond Perturbation’ book by Liao Shijun

dV

dt
− V (t)2 + 1 = 0 (31)

with the initial conditions

V (0) = 0

Note that this has the exact solution, V (t) = tanh(t).

4.1 Forming the HAM solution

For simplicity we choose to represent the solution in the set of base functions

{tn|n = 1, 2, 3, ...} (32)

so the solution will be in the form

V (t) =
∞∑
n=0

cnt
n (33)

where cn is a coefficient which needs to be determined. From our ODE we also
choose the linear operator

L[φ(t; p)] =
∂φ(t; p)

∂t
(34)

and our non-linear operator

N [φ(t; p)] =
∂φ(t; p)

∂t
+ φ(t; p)2 − 1 (35)

We are free to choose the initial approximation so long as it satisfies the initial con-
ditions so we use V0(t) = t. Using these definitions we form the mth order deformation
equation (given by equation 15)



L[Nm(t)− χNm−1(t)] = h̄H(t)
1

(m− 1)!

∂m−1N [φ(t; q)]

∂m−1q

= h̄H(t)
1

(m− 1)!

∂m−1

∂m−1q

[
∂φ(t; p)

∂t
+ φ(t; p)2 − 1

]

= h̄H(t)
1

(m+ 1)!

∂m−1

∂qm−1
+

 ∞∑
n=0

V ′m(t) +

(
∞∑
n=0

Vn(t)qn

)2

− 1


= h̄H(t)

(
V ′m−1(t) +

m−1∑
r=0

Vr(t)Vm−r−1(t)− (1− χm−1)

)
(36)

Now the inverse linear operator will be integration so we can form the expression

Vm(t) = χmNm−1(t)+h̄H(t)

∫ t

0

(
V ′m−1(t) +

m−1∑
r=0

Vr(t)Vm−r−1(t)− (1− χm−1)

)
dt+Cm

(37)
with Cm calculated from the initial conditions and the auxiliary function chosen as

H(t) = 1. Using up to the 3rd order deformation equation with initial approximation
V0(t) = t, we have the HAM solution:

V (t) =
17h̄7

315
t7 + (

2h̄3

15
+

4h̄2

5
)t5 + (

h̄3

3
+ h̄2 + h̄)t3 + t (38)

4.2 Forming the BEEF solution

As stated previously, the BEEF solution is made up of two Taylor series, the ‘inner’
series which calculates V (0), V ′(0), V ′′(0) . . . and the ‘outer’ series which uses the inner
series to approximate V (a). Here we show how to calculate the BEEF solution of the
non-linear ODE. Suppose we choose to take the inner series to three terms where

V (0) = V0 = 0

V ′(0) = 1− V 2
0 = 1

V ′′(0) = 2V 3
0 − 2V 2

0 = 0

(39)



Thus we approximate V (a) as:

V (a) ≈ 0 + 1a+
0a2

2!
= a (40)

Thus using the outer Taylor series we can get an approximate of V (t) as

V1(t) = a3 + t(1− a2)
V2(t) = a3 + t2(1− a2)
V3(t) = a5 + t(1 + a2 − 2a4) + t2(a3 − a)

(41)

When a = 0, the BEEF solution produces the Maclaurin series of tanh(t):

V (t) = t− 1

3
t3 +

2

15
t5 − 17

315
t7 +

62

2835
t9... (42)

We note that when h̄ = −1, the HAM solution also gives this Maclaurin series.

4.3 Choosing auxiliary parameter h̄

In 1997, the non-zero auxiliary parameter h̄ was introduced to HAM which provides
a family of expressions in terms of h̄. The result of this is that the rate and region of
convergence are dependent upon the value of h̄. This apparently provides us with a
convenient way to control the convergence of the HAM solution. According to Liao’s
book ‘Beyond Perturbation’, determining the optimal value of h̄ involves plotting the
h̄-curves of the solution. By plotting the partial sums of fm(t) evaluated at a specific
value of t against h̄, we can expect to see the curve to be horizontal over the range
for which the solution converges. For this specific problem, this range was found to be
approximately −1 ≤ h̄ < 0. To further refine this value, the HAM solution (30th order
deformation) was plotted using different h̄ values between -1 and 0 as seen in figure
1. Further experimentation showed h̄ = −0.1 was the optimal value for this particular
IVP which was confirmed by Liao’s book.

4.4 Comparing BEEF and HAM solutions

We go about comparing the BEEF and HAM (with h̄ = −0.10) solutions with the exact
solution. Figure 2 compares the HAM solution taking the 30th order deformation
with the Maclaurin series with 100 terms (BEEF centred at a = 0). The radius of
convergence for the BEEF solution appears to be approximately 1.5 and we can show
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Figure 1: Comparison of various h̄ values in order to determine its optimal value
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Figure 2: HAM solution taking 100 deformation equations, h̄ = −0.10 compared to
BEEF taking 100 inner and outer terms with a = 0.

analytically that BEEF will converge for values of |t| < π
2
. HAM however has a larger

radius of convergence and appears to converge for values |t| ≤ 6.35.
Clearly both HAM and BEEF solutions will produce accurate representations of

the exact solutions over a relatively small domain with HAM converging over a domain
about 4 times larger. However one advantage of BEEF is that we can re-centre the
series at non-zero values. Through experimentation it was determined that BEEF
could be re-centred between the values of −1.5 ≤ a ≤ 1.5 and still produce a convergent
solution. Figure 3 shows BEEF centred at a = 1.5 and despite being able to provide a
accurate representation over a wider positive domain, the HAM method still converges
over a larger radius. These results indicate there is evidence to suggest HAM is a more
appropriate choice for solving this particular non-linear differential equation.

4.5 Comparing HAM and Padé Solutions

We now compare the HAM solution to the Padé approximation. We go about forming
the Padé approximate from the truncated Taylor series formed from BEEF using a = 0.
Below we briefly demonstrate how to calculate the Padé approximate for this problem.
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Figure 3: HAM solution taking 100 deformation equations, h̄ = −0.10 compared to
BEEF taking 100 inner and outer terms with a = 1.5. The light green curve is BEEF
centred at 0



V (t) = RN(t)

t− t3

3
+

2t5

15
− 17t7

315
+ ... =

a0 + a1t+ a2t
2 + ...+ antn

1 + b1t+ b2t2 + ...+ bmtm

(43)

By equating coefficients we can form Padé approximates for the differential equa-
tion. For example, we go about computing R[2/2]:

t− t3

3
=
a0 + a1t+ a2t

2

1 + b1t+ b2t2
(44)

a0 = c0 = 0

a1 = c1 = 1

a2 = b1c1 = b1

(45)

−1

3
+ 0 + b2 = 0

0 +
−1

3
b1 + 0 = 0

(46)

From this we get

R[2/2] =
t

t2

3
+ 1

(47)

Similarly we can get further solutions

R[3/2] =
2t3

3
+ t

2t2

5
+ 1

R[1/4] =
t

−2t4

90
+ t2

3
+ 1

(48)

etc. . . .
Figure 4 shows that when comparing R[30/30] with the HAM solution using the 30th

order deformation we see that the Padé approximate matches the exact solution for
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Figure 4: HAM solution using 30th order deformation equation compared to Padé
approximate, R[20/20]

approximately t < |12|. This is almost twice as large as the radius of convergence of
HAM suggesting that the Padé approximation is more effective for solving this non-
linear differential equation.

A Padé approximate was taken from the HAM polynomial however this did not
provide any greater convergence than HAM.

4.6 Equivalence of Methods

We previously noted that when taking the BEEF solution centred at 0 and the HAM
solution with h̄ = −1 both methods produce the Mclaurin series for tanh(t). Also
based on our choice of base function (polynomial) the HAM solution produced a power
series as does the BEEF solution. From this it was hypothesised that there may be
a simple relationship between the two methods based on our choices for forming the
HAM solution.

We list the mth order deformation equation for HAM using the initial approxima-
tion V0(t) = t



V1(t) =
1

3
h̄t3

V2(t) =
1

3
h̄(1− h̄)t3 +

2

15
h̄2t5

V3(t) =
1

3
h̄(1 + h̄)2t3 +

2

15
h̄2(1 + h̄)t5 +

17

315
h̄3t7

(49)

By observation, we can deduce that the coefficient of the cubic term, c3 using up
to the mth order deformation is given by:

c3 =
h̄

3
((1 + h̄)m +m− 1) (50)

Also using equation 23 we can define the BEEF coefficient of the cubic term taking
m terms of the outer series

c3 =
m∑
n=3

1

n!

(
n

n− 3

)
f (n)(a)(−a)n−3 (51)

Currently no simple relationship between these two coefficients (or higher order)
has been found and it is likely that if there is a relationship between the two, it is
non-linear or highly complex.

4.7 Initial approximation

An important property of HAM is that any initial approximation which satisfies the
initial condition (in this case V (0) = 0) can be used. So far we have only used the
linear term V0(t) = t and will now go about comparing different initial approxima-
tions. Figure 5 shows that while all four initial approximations provided an accurate
representation of the exact solution over a small domain, the optimal choice was the
linear term. Note that while V0(t) = t, t2, t3 were taken to the 20th deformation,
V0(t) = sin(t) was only taken to the 7th deformation due to computational restraints.
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Figure 5: Comparison of different initial approximations of HAM using h̄ = −0.1 and
20th order deformation with exact solution. V0(t) = sin(t) was only taken to 7th order
deformation due to computational restraints



5 Conclusion

In this paper we have have presented three different methods for obtaining analytical
solutions to non-linear differential equations. Our focus was to explore the Homotopy
Analysis Method, a relatively new technique based on the concept of homotopy and
compare it to two well established methods, the Taylor series and Padé approximation.
This was done through examination of the non-linear IVP V ′(t) = 1 − V (t)2 with
V (0) = 0 (which has the exact solution tanh(t)) and computing solutions with all three
methods. Computation of the HAM method shows that through careful selection of h̄
we were able to obtain a radius of convergence of about 6.35 for a series solution which
appears to be centred at the origin.

This is significantly larger than the BEEF’s radius of convergence which was π
2
.

By taking an approximation of V (a) we were able to re-centre the series between
−1.5 ≤ a ≤ 1.5. Despite this, the HAM solution was still able to provide an accurate
approximation of the exact solution over a wider domain. However by taking the BEEF
polynomial and using it to generate a Padé approximate, we saw this method had the
largest radius of convergence of about 12. This suggests that the Padé approximate
was the most successful for producing a solution to the non-linear differential equation.

This investigation did reveal several advantages which sets HAM apart from the
other methods. Perhaps the most significant is the auxiliary parameter h̄ which as
discussed in section 4.3 allows control of the convergence of the series. However several
disadvantage were also discovered, notably the method’s complexity especially com-
pared to the Taylor series which is typically taught to first year calculus students. This
paper has shown that while HAM certainly is capable of producing analytical solutions
to differential equations, its position amongst other well established methods may be
hard to justify.
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