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1 Introduction

When working with large real world systems such as the wiring of a brain or the
internet, the amount of data contained in such a system can make obtaining useful
information difficult. By representing a large and complicated real world system in a
much simpler form of points (vertices/nodes) connected by lines (edges) which we call a
network, we can often obtain information on the system as a whole. Complex networks
are large heterogeneous networks that have features not typically found in random (erd
ös-rényi networks). Many real world networks are categorised as complex networks
because they contain the kind of features that random networks typically don’t contain
[5]. In order to understand more about real world networks it would be useful to
be able to compare them to similar networks with some similar constraints. The
current method of generating networks makes direct comparison not so straight forward
because it is not often clear whether we are generating suitable networks. The purpose
of this report is to investigate a new method of network generation and comparison
which directly conserves one of the initial properties of a network in question. In order
to test this network generation algorithm, some real world networks have been selected
and a select number of network properties have been used as initial test properties
to find out what this algorithm can tell us. This test will either show that a real
world networks’ measured properties fall within a statistically acceptable range from
the distribution of the values measured on our generated networks, or that certain
properties of a real world network are outliers of such a distribution. In the second
case an interesting feature of our real world network may have been discovered.



2 Terminology

Node / Vertex -Points that are used to represent an individual, group or object. In all
of the cases studied below nodes have only one type, for example in an airline network
all nodes represent airports or in a social network all nodes may represent people.
Edge / link - If an edge exists between two nodes then this symbolises some relation-
ship exists between these two nodes. For example edges are used to represent flights
between airports in an airport network.
Network - A network is a collection of nodes and their associated edges, networks are
often used to represent a real world system
Degree of a node - The number of edges attached to a node
Degree distribution - The number of nodes in a network of each degree.

3 Background

One particular class of networks currently studied is “scale free” networks which are
categorised by having degree distributions that follow a power law. A lot of real world
complex networks fall into this category of being scale free. The current method of
generating scale free networks is called preferential attachment which involves adding
nodes to a network along with a fixed number of edges attached to this node, the
probability that one of these edges attaches to one of the networks current nodes is
proportional the current nodes degree. Higher degree nodes have a higher probability
that a new edge will be attached to it and therefore the degree of these nodes increases
faster than the nodes with smaller degree. This produces a degree distribution with
a high number of nodes with small degree and a non zero probability of there being
a node of arbitrary degree. This method of network generation can generate all net-
works that result from a given growth mechanism, which forms the sample space if
we were to sample from networks generated this way. While using this method it is
reasonably easy to generate scale free networks of arbitrary size and by tweaking the
number of edges you add each time or possibly adding constraints, the growth mech-
anism sampled from can be changed. However with real world networks it is often
difficult to determine how a network has grown so that even your best estimate of a
networks growth mechanism could still give you a sample space that is very different
from an experimental network. For direct comparison it would be useful to have a set
of networks with which it is known share similar constraints and have some constraints
(that we may not be able to quantify in real networks) left free.



One such network property that can be conserved is the degree distribution of the
network. Instead of sampling from all networks of a given growth mechanism, we
sample from all networks of a given degree distribution (say the degree distribution
of the initial real world network). This means that we can make direct comparison
to networks which share at least one property and see if our experimental network is
typical of such a distribution. The properties of the networks in this sample space would
be expected to follow a probability distribution and it is possible that we may find that
real world networks have properties that are outliers from from this distribution. If such
a property were to be found there may be an underlying reason as to why this occurs
such as an constraints on the system or a particular purpose a network is designed to
fulfil. So finding such properties allows for the opportunity to discover and investigate
special properties of real world networks.

4 Method

In order to randomly generate a network with the same degree distribution as the real
world network but with independent structure, an algorithm is used whose function is
to switch edges between unconnected pairs of connected vertices (see Figure 1 below).

Figure 1: shows the wiring between the four
nodes involved in an edge switch before and
after the process

This process changes the local struc-
ture of the network but not the degree
distribution of the network as all nodes
are still attached to the same number
of edges. By repeatedly applying this
process the degree distribution remains
the same, but eventually the wiring of
the network becomes independent of the
initial structure of the real world net-
work. In order to determine approxi-
matelly when the generated network be-
comes independent of the initial network,
the edge-switch algorithm can be run re-
peatedly while periodcally taking mea-
surements of the properties that we are interested in. What is observed is that the
properties start at some initial value and then tend towards some distribution. This
typically looks like the plot in Figure 2 below.



Figure 2: shows the difference between a
measurement of the clustering of a network
before and after approximatelly 3000 edge
switches. This process was repeated 200
times and the x-axis indicates measurement
number.

The flat region in this plot indicates
that the algorithm is now sampling from
networks according to some equillibrium
distribution implying the structure is in-
dependent of the initial networks wiring.
Once an independent network is gener-
ated its properties can then be measured
and if this process is repeated many times
than the measurements of these distri-
butions forms a probability distribution.
Another very similar but computationally
less intensive method is to start with the
initial real world network and obtain the
first independent network, then perform
the edge switch on this network until a
new network is obtained that is indepen-
dent of the previously generated network.
This usually doesn’t take as long to gen-
erate multiple independent networks be-
cause the network already starts within
the required equilibrium distribution.

By altering our initial network within the given state space of all networks with a
given degree distribution until we reach an equilibrium distribution, effectively a sam-
ple space of all possible networks with the given initial degree distribution has been
built (essentially a Markov chain Monte Carlo [6] ). By sampling 1000 random realisa-
tions of this sample space a distribution of the properties of these network forms. Then
the distribution obtained can be compared to the properties of the original network.

In order to properly analyse a real network, network properties that represent the
physical structure of a network should be measured and compared in the real world
system and in the generated system. The properties that will be compared in the rest
of this paper are:

1. Clustering:
Roughly equates to the probability that the neighbours of a common node are
themselves neighbours. This property is calculated by finding the clustering co-



efficient (the ratio of connected paths of length three to total possible connected
paths of length three) at each vertex and then calculating the mean for all ver-
tices. In a social network this would be equal to the probability that two of an
individuals friends are friends with each other as well.

2. Assortativity:
The likelihood that nodes of similar degree are connected. It is the correlation
between the degree of the nodes at either end of an edge, assortativity close to
0 indicates no definite correlation between the degrees of connected nodes. If
assortativity is greater than 0 the network is assortative and if it is less than
0 it is disassortative. This property takes a value between -1 and 1 with the
extreme values indicating a strong correlation between the nodes degrees and
there likelihoods to be connected to each other. For example, how likely are two
nodes of high degree to be connected.

3. Diameter:
The median of the mean of the minimum path length between random nodes.
Essentially used as a measure of distance.

The reason that these properties were chosen as opposed to other possible properties
is because they are properties of the network as a whole and not just of the individual
components. This allows for analysis into how the whole network changes and not just
the structure around some particular component or node.

This technique of network generation is useful in that it can be used to analyse real
world networks. In order to do this, some real world networks that represent some of
the main classes of systems have been selected for testing. These networks include;

1. Airline network - A network containing information on the 500 busiest airlines
in the United States, in this network the nodes represent airports and the edges
represent flights between airports. This is an example of a technological network.
[1]

2. Neural network - A network representing the neural structure of a nematode
called C.elegans (Caenorhabditis elegans) in which edges represent links between
neurons. This is an example of a biological network. [2]



3. High school network - A network demonstrating the friendships between school
students in a rural American high school. Nodes represent students and edges
represent friendships between students. This network is an example of a social
network.[3]

4. Co-authorship network in network science - A network that demonstrates co-
athorship of papers between network scientists. Nodes represent network sci-
entists and edges represent that these two scientists have coauthored a paper
together. This network is also a social network.[4]

The large complicated nature of complex networks make obtaining any information
by simple observation difficult. The networks mentioned above can be visualised with-
out any constraints encoded using Mathematica’s graphing capabilities (see appendix
1) The degree distributions of these networks (see appendix 2) form the constraints for
the networks that we sample from to make comparisons with our real world network.

5 Results

After using the previously described method on the Airline network, the C.elegans
neural network, the high school network and the co- authorship network, distributions
were obtained and compared to the real world measurements (see appendices 3, 4, 5
and 6 respectively for visualisations of these results). What is clear is that there is
some very evident “outliers”, properties that do not seem typical of the distributions
of values. The presence of such an outlier indicates that the structure of the network
is special in some way and ideally it would be helpful to consider physical explanations
as to why it is special.

5.1 Airline Network

The properties of this network that are not typical of networks of the same degree
distribution are clustering and diameter. This implies that there is some kind of
constraint or other factor that drives network to grow in a very atypical way. The
clustering of the real world airline network is much greater than any of the values
measured from the random realisations of its degree distribution. If this situation is
thought of physically it can be hypothesised that a majority of this can be attributed
to the geographic constraints on the system (including distance) which makes flying
between closer airports easier. An interesting feature in the comparison between the
real networks diameter and that of the random realisations is that the real diameter is



higher than the distribution. This is interesting because the airline network is designed
by humans to transport people (not goods in this case) so a higher number of flights
between random destinations would be undesirable. This means that either the current
flight path design is inefficient or that other constraints on the system make it so that
more flights must be taken than average given the degree distribution of the network.

5.2 C.elegans neural Network

The results of this network show that all measured properties were outliers. We could
hypothesise in this case that the higher clustering is a result of the way the nematodes
brain must process information (i.e. its purpose). The assortativity in this case, while
negative, is still close to zero meaning there is still not a large amount of correlation be-
tween the degree of a node and the degree of another node connected to this node. The
comparison between the random realisations and the real measure value of diameter is
interesting in that while it shows the real value to be atypical, the difference between
the mean value of the distribution and the measured value is 0.06. In a physical sense
this is not likely to have a noticeable impact on the structure of the nematodes neural
network. This shows that even though a property is an outlier to the distribution of
measured values, this may not always have a large impact on the physical functions of
a system.

5.3 Highschool Network

The high school network is a social network which means it is expected that such a
network should have a large clustering value. This usually arises because it is more
likely that an individuals friends are themselves friends (due to a common contact and
more likelihood of interaction e.c.t.). What is shown by the results of the high school
network analysis is that the clustering is in fact much higher than that of the random
realisations. There is no definition of what a high clustering value actually is, if it is
possible to have some similar networks to compare to, it may be easier to determine
whether or not the clustering of a network is actually higher than it needs to be. It
is also noticeable that the diameter of this network is quite high, possibly due to the
large amount of clustering that occurs.

5.4 Co-authorship Network

The co-authorship network is again a social network, so it would be expected to be
in some ways similar to the high school network. What is immediately obvious when



comparing the results for the two networks is that in both cases both the diameters
and the clustering values were much higher than the values measured for the random
realisations of their respective degree distributions. This may be a consistent property
of all social networks and provide a reliable way to compare and categorise social net-
works.

This analysis produced a lot of outliers when comparing the properties of a real
world network to the properties of the random realisations of that networks degree
distribution. This suggests that real world networks seem to be highly atypical and
it was found that some are more atypical than others. For example it seems that the
properties measured on the co-authorship network were much further from the distri-
bution of the measured values than the neural network seemed to be. One reason that
such a large proportion of the properties were outliers could be because the purposes
and functions of real world networks make them specialised in a range of categories.
It is possible that this method is more suited to specific classes of complex networks
such as the airline network which was a technological network. Not only did the anal-
ysis of this network provide an interesting result related to the diameter, physically
performing an edge switch on this network simply involves changing future flight plans
(i.e. it is physically plausible to do this). Another possible explanation as to why so
many of the network properties were atypical could be the fact that these properties
were selected, and they may have been unintentionally selected on that expectation
that these properties were what made the system in question special. It would be
useful to measure a lot more properties, some which may not be completely physically
significant, so as to determine whether real networks are atypical in a wider range of
properties.

6 Conclusion

The method of switching the edges of real networks to construct a sample space of all
networks with the same degree distribution as the real network has the possibility to
confirm expectations about some networks as well as uncovering previously unexpected
properties of others. An example of a property of a network that may have been
unexpected was the airline network analysed which had a diameter higher than any of
the random realisations measured. The reason this property may have been unexpected
is because amongst the likely constraints on the system there would be geographic
ones as well as those enforced by humans as to build an efficient system. Both of
those constraints would have been conflicting and to be able to recognise that similar



networks have lower diameters indicates that the effect of the geographic constraints
are stronger. Another interesting result of this technique was the confirmation of
the similarities between networks of similar class. It was found that both the high
school network and the co-authorship network in network science had clustering and
diameters far above most other networks with the same degree distribution. Uncovering
such similarities between networks of similar class may help to categorise unknown
networks or increase our understanding of the networks in this class that we already
know. What is clear from this analysis is that real world networks have properties
that are not at all typical of the random realisations of the networks with the same
degree distribution. This suggests that if a system has a purpose then we can often
find special properties of the network which result from the physical function of the
system.
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9 Appendices

9.1 Appendix 1 - Real world networks



9.2 Appendix 2 - Network Degree Distributions



9.3 Appendix 3- Airline Network

Note: “Real” indicates the measurement on the real world network, “Mean” and
“Std dev.” refer to the distributions of the measured values. On the histograms shown,
the position of “Real” is indicated by the red line.



9.4 Appendix 4 - Neural Network

Note: “Real” indicates the measurement on the real world network, “Mean” and
“Std dev.” refer to the distributions of the measured values. On the histograms shown,
the position of “Real” is indicated by the red line.



9.5 Appendix 5 - High School Network

Note: “Real” indicates the measurement on the real world network, “Mean” and
“Std dev.” refer to the distributions of the measured values. On the histograms shown,
the position of “Real” is indicated by the red line.



9.6 Appendix 6 -Coauthorship Network

Note: “Real” indicates the measurement on the real world network, “Mean” and
“Std dev.” refer to the distributions of the measured values. On the histograms shown,
the position of “Real” is indicated by the red line.


