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1 The Heisenberg group

The real three dimensional Heisenberg group is a group in the classical sense. It is a
space of 3× 3 matrices defined in the following way:

H3 :=

{1 x z
0 1 y
0 0 1

 : x, y, z ∈ R

}

If we take the variables x, y, z to represent the standard basis directions in the
Euclidean space, we can then study the geometry of the group. For notational conve-
nience, the matrices will be denoted in three tuple form for the rest of the report. The
group operation is the standard matrix multiplication, which gives the multiplication
rule:

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1y2)

The identity element of the group is the standard identity matrix I = (0, 0, 0),
which corresponds to the origin, and for any matrix (x, y, z), the inverse is given by
(x, y, z)−1 = (−x,−y, xy − z). The Heisenberg group is a Lie group, as such it has an
associated Lie algebra called the Heisenberg algebra.



2 The Heisenberg algebra

The Heisenberg algebra, h := (H, [·, ·]) is a space of matrices equipped with the Lie
bracket operation defined in the following way:

H :=

{0 a c
0 0 b
0 0 0

 : a, b, c ∈ R

}
, [·, ·] : H ×H → H : [A,B] = AB −BA

Clearly h is a linear space. To prove that h is a Lie algebra, we show that the
bracket [·, ·] is bilinear, skew-symmetric and satisfies the Jacobi identity.

First we check bilinearity.
Let A,B,C ∈ H and let s, t ∈ R, then

[sA+ tB, C] = (sA+ tB)C − C(sA+ tB)

= sAC + tBC − sCA− tCB
= s(AC − CA) + t(BC − CB)

= s[A,C] + t[B,C]

Also,

[C, sA+ tB] = C(sA+ tB)− (sA+ tB)C

= sCA+ tCB − sAC − tBC
= s(CA− AC) + t(CB −BC)

= s[C,A] + t[C,B]

So the Lie bracket is R bilinear.
Next we check skew-symmetry.

Let A,B ∈ H, then

[A,B] = AB −BA
= −(BA− AB)

= −[B,A]

Skew-symmetry is satisfied.



Lastly we check that h satisfies the Jacobi identity.

Let A,B,C ∈ H, then firstly

[A, [B,C]] + [B, [C,A]]

= A[B,C]− [B,C]A+B[C,A]− [C,A]B

= A(BC − CB)− (BC − CB)A+B(CA− AC)− (CA− AC)B

= ABC − ACB −BCA+ CBA+BCA−BAC − CAB + ACB

= ABC + CBA−BAC − CAB

Then using this result we have,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]]

= ABC + CBA−BAC − CAB + [C, [A,B]]

= ABC + CBA−BAC − CAB + C[A,B]− [A,B]C

= ABC + CBA−BAC − CAB + C(AB −BA)− (AB −BA)C

= ABC + CBA−BAC − CAB + CAB − CBA− ABC +BAC

= 0

So the Jacobi identity is satisfied and h is indeed a Lie algebra.

3 The geodesic equation and the metric

The particular focus of this project was to classify the geodesics of the group. A
geodesic is a curve that locally minimises the distance between two points in a space.
Considering surfaces in R3, some examples of geodesics are the straight lines on a
plane and the great circles on a sphere. For a curve to be a geodesic it must have a
geodesic curvature of 0. What this says is that the tangential component of the second
derivative vector of the curve must be 0. For an arbitrary Riemannian space this is
expressed by the geodesic equation.

u′′k +
∑
ij

Γk
iju
′
iu
′
j = 0 (1)

Where uk(t) are the coordinate functions of the curve and Γk
ij are the Christoffel

symbols.



The very first step to classifying our geodesics is to equip our space with a metric,
which gives us a notion of distance. For this project, a left invariant metric is used.
This will allow us to describe a geodesic issuing from an arbitrary point (x, y, z) ∈ R3

in terms of geodesics issuing from the origin, as we will then be able to left translate
these curves to the point (x, y, z).

To construct a left invariant metric, we will adopt the approach used in [1], using
left invariant vector fields. A vector field X is left invariant if the pushforward from
X(x) to X(y) gives the same result as left translating from x to y and then evaluating
our vector field for any elements x and y in the space. To obtain left invariant vector
fields we let γ1, γ2, γ3 be curves through the origin at t = 0 and we left translate these
curves by an arbitrary point (x, y, z) to get the following curves.

γ1 = (x, y, z) · (t, 0, 0) = (x+ t, y, z)

γ2 = (x, y, z) · (0, t, 0) = (x, y + t, z + xt)

γ3 = (x, y, z) · (0, 0, t) = (x, y, z + t)

Differentiating these left translated curves with respect to t gives the left invariant
vector fields X1, X2 and X3.

X1 = (1, 0, 0), X2 = (0, 1, x) and X3 = (0, 0, 1)

At this point we make a choice to use this set of vector fields as an orthonormal frame.
This means we define the inner product on the tangent space such that {X1, X2, X3}
is an orthonormal basis of the tangent space at any point (x, y, z) ∈ R3. However, this
basis is not unique, in fact given an arbitrary basis and any inner product, we can
construct a new basis {Z1, Z2, Z3} that is orthogonal with all the elements the same
length, that satisfies the Lie bracket conditions [Z1, Z2] = Z3 and
[Z1, Z3] = [Z2, Z3] = 0.

To prove this we let {X1, X2, X3} be an arbitrary basis for h. This basis satisfies
the properties [X1, X2] = X3 and [X1, X3] = [X2, X3] = 0. Then if we choose any
inner product on the tangent space, we can define Y3 = aX3 where a ∈ R and a 6= 0,
then we can use the Gram-Schmidt orthonormalisation process to construct Y1 and Y2.
Take Y1 = bX1 − cY3 and Y2 = dX2 − eY1 − fY3 where b, c, d, e, f ∈ R are the relevant
coefficients from the Gram-Schmidt process. It can easily be shown that [Y1, Y2] = 1

a
Y3

and [Y1, Y3] = [Y2, Y3] = 0.



Then {Ỹ1, Ỹ2, Ỹ3} =
{

Y1

‖Y1‖ ,
Y2

‖Y2‖ ,
Y3

‖Y3‖

}
is an orthonormal basis. Due to the

properties of the original basis and the bilinearity of the Lie bracket, we have
[Ỹ1, Ỹ3] = [Ỹ2, Ỹ3] = 0.
Also,

[Ỹ1, Ỹ2] =
1

‖Y1‖‖Y2‖
[Y1, Y2]

=
1

a‖Y1‖‖Y2‖
Y3

=
‖Y3‖

a‖Y1‖‖Y2‖
Ỹ3

=
1

α
Ỹ3

where α = a‖Y1‖‖Y2‖
‖Y3‖ . Then we can define a new basis {Z1, Z2, Z3} = {αỸ1, αỸ2, αỸ3}.

As we are simply scaling the orthonormal basis we have [Z1, Z3] = [Z2, Z3] = 0.
Then,

[Z1, Z2] = α2[Ỹ1, Ỹ2]

=
α2

α
Ỹ3

= αỸ3

= Z3

We now have a basis that satisfies the Lie bracket conditions, is orthogonal and all
elements are the same length. So as the metric is defined in terms of the inner product
of the basis vectors of the tangent space, all the left invariant metrics we can put on
the Heisenberg group are equivalent up to scaling by a constant.

Getting back to our basis {X1, X2, X3} = {(1, 0, 0), (0, 1, x), (0, 0, 1)},we can express
the standard partial derivatives in the x, y, z directions in terms of our basis.

∂
∂x

= X1,
∂
∂y

= X2 − xX3 and ∂
∂z

= X3

To obtain our metric, we take the inner product of these partial derivatives. Using the
orthonormality of our basis, the metric becomes

ds2 = dx2 + (1 + x2)dy2 − 2xdydz + dz2



equivalently, the matrix of the metric tensor is given by

g =

1 0 0
0 1 + x2 −x
0 −x 1


The matrix representation is useful as it allows the inverse matrix to computed using
standard linear algebraic techniques. The inverse matrix is given as follows,

g−1 =

1 0 0
0 1 x
0 x 1 + x2

 (2)

4 The Christoffel symbols

The Christoffel symbols of the first kind are defined in the following way:

Γij,l =
1

2

(∂gil
∂uj

+
∂glj
∂ui
− ∂gij
∂ul

)
where (u1, u2, u3) = (x, y, z). As the metric only depends on x, the partial derivatives
with respect to y and z will automatically be 0. The only nonzero symbols are:

Γ22,1 = −x

Γ23,1 = Γ32,1 =
1

2
Γ12,2 = Γ21,2 = x

Γ13,2 = Γ31,2 = −1

2

Γ12,3 = Γ21,3 = −1

2

These symbols of the first kind can then be used in conjunction with the matrix inverse
to the matrix of the metric tensor (2) to obtain the Christoffel symbols of the second
kind by the formula:

Γk
ij =

3∑
l=1

(g−1)klΓij,l



This gives the following nonzero symbols of the second kind:

Γ1
22 = −x

Γ1
23 = Γ1

32 =
1

2

Γ2
12 = Γ2

21 =
1

2
x

Γ2
13 = Γ2

31 = −1

2

Γ3
12 = Γ3

21 =
1

2
(x2 − 1)

Γ3
13 = Γ3

31 = −1

2
x

5 The geodesics

Using the Christoffel symbols and (1), we obtain the following system of differential
equations.

x′′ − x(y′)2 + y′z′ = 0 (3)

y′′ + xx′y′ − x′z′ = 0 (4)

z′′ + (x2 − 1)x′y′ − xx′z′ = 0 (5)

We can see that our equations do not depend on y and z but only their derivatives, so
define u = y′ and v = z′.
Then our equations become:

x′′ − xu2 + uv = 0 (6)

u′ + xx′u− x′v = 0 (7)

v′ + (x2 − 1)x′u− xx′v = 0 (8)

Multiplying (7) by x and then subtracting (8) gives

xu′ + x′u− v′ = (xu− v)′ = 0

So we must have xu− v = c, where c is a constant. Rearranging this for v gives

v = xu− c (9)



Now we can eliminate v from equations (6) and (7), which gives

x′′ − cu = 0 (10)

u′ + cx′ = 0 (11)

Differentiating (11) gives

u′′ + x′′ = u′′ + c2u = 0 (12)

Now we have two separate cases to consider, c = 0 and c 6= 0.

Case 1. c = 0.

Equations (10) and(11) become:

x′′ = 0

u′ = 0

This gives x = At + B and u = C, so y = Ct + D with A,B,C,D ∈ R. From
equation (9) we have v = xu = ACt+BC, which gives z = 1

2
ACt2 +BCt+E. Using

the initial conditions x(0) = y(0) = z(0) = 0, we get B = D = E = 0. So our solutions
are:

x = At

y = Ct

z =
1

2
ACt2

This solution gives a family of parabolas (which degenerate to lines when A = 0 or
C = 0) that forms a hyperbolic paraboloid z = 1

2
xy.



Figure 1: Saddle formed by taking the union of geodesics from Case 1 over all pairs
(A,C) ∈ R2.

Case 2. c 6= 0.

Equation (12) is an ordinary differential equation which has the general solution
u = A cos(ct) + B sin(ct). As we are finding the geodesics issuing from the origin, we
will integrate from 0 to t and use the initial conditions x(0) = y(0) = z(0) = 0. Then
we get:

y(t) =

∫ t

0

A cos(ct) +B sin(ct) dt

=
1

c
[A sin(ct)

∣∣t
0
−B cos(ct)

∣∣t
0
]

=
1

c
[B −B cos(ct) + A sin(ct)]



From equation (11) we have x′ = −1
c
u′ = A sin(ct)−B cos(ct).

Then we have:

x(t) =

∫ t

0

A sin(ct)−B cos(ct) dt

=
1

c
[−A cos(ct)

∣∣t
0
−B sin(ct)

∣∣t
0
]

=
1

c
[A− A cos(ct)−B sin(ct)]

Now, from equation (9) we have

v = xu− c

=
1

c
[A− A cos(ct)−B sin(ct)][A cos(ct) +B sin(ct)]− c

=
1

c
[A2 cos(ct) + AB sin(ct)− A2 cos2(ct)− 2AB cos(ct) sin(ct)−B2 sin2(ct)− c2]

=
1

c
[I1 + I2 + I3 + I4 + I5 + I6]

Then we will have z(t) = 1
c

∫ t

0
[I1 + I2 + I3 + I4 + I5 + I6] dt.

Firstly, ∫ t

0

I1 dt =

∫ t

0

A2 cos(ct) dt

= A2 sin(ct)
∣∣t
0

=
A2

c
sin(ct)

and, ∫ t

0

I2 dt =

∫ t

0

AB sin(ct) dt

= −AB
c

cos(ct)
∣∣t
0

=
AB

c
[1− cos(ct)]



and, ∫ t

0

I3 dt =

∫ t

0

−A2 cos2(ct) dt

= −A
2

2

∫ t

0

1 + cos(2ct) dt

= −A
2

2
[t
∣∣t
0

+
1

2c
sin(2ct)

∣∣t
0
]

= −A
2

4c
[2ct+ sin(2ct)]

and, ∫ t

0

I4 dt =

∫ t

0

−2AB cos(ct) sin(ct) dt

= −2AB

∫ sin(ct)

0

1

c
u du

= −AB
c

sin2(ct)

and, ∫ t

0

I5 dt =

∫ t

0

−B2 sin2(ct) dt

= −B
2

2

∫ t

0

1− cos(2ct) dt

= −B
2

2
[t
∣∣t
0
− 1

2c
sin(2ct)

∣∣t
0
]

= −B
2

4c
[2ct− sin(2ct)]

and finally, ∫ t

0

I6 dt =

∫ t

0

−c2 dt

= −c2t



Now we have,

z(t) =
1

c

∫ t

0

[I1 + I2 + I3 + I4 + I5 + I6] dt

=
1

c
[

∫ t

0

I1 dt+

∫ t

0

I2 dt+

∫ t

0

I3 dt+

∫ t

0

I4 dt+

∫ t

0

I5 dt+

∫ t

0

I6 dt]

=
A2

c2
sin(ct) + [

B2 − A2

4c2
] sin(2ct) +

AB

c2
[cos2(ct)− cos(ct)]− t

2c
[A2 +B2 + 2c2]

The nonzero case yields two types of geodesics. Taking A = B = 0 gives the curve
(0, 0,−c) which runs along the z axis. However, when A and B are non zero the
geodesics become helical type curves, although not strictly helices due to the trigono-
metric terms in the z coordinate.

Figure 2: Helical and straight geodesics in Case 2.
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