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Abstract 

 

This paper provides a survey of methods that have been developed to solve multi-

objective problems. We focus only on non-interactive exact methods that generate the 

entire set of optimal solutions. The basic concepts of these multi-objective problems are 

introduced along with their solutions. We then review some of the available exact 

methods. 

 

1 Introduction 

 

Multi-objective programming is used in application for many real world problems 

including problems in the fields of engineering, mining and finance.  

In multi-objective programming there are multiple conflicting objectives 

whereby improving one objective will reduce the value of others, leading to a trade-off 

between solutions. It is assumed that no single solution will optimise all objectives 

simultaneously because this would be a trivial case.  

The main aim of multi-objective programming is to assist a decision maker 

(DM) to choose a preferred solution amongst all the trade-offs. In this case, it is not 

necessary to generate all solutions when the DM is involved in the process since some 

solutions may be eliminated at each stage. However, in this paper we will focus on non-

interactive exact methods that do not involve the DM in order to generate the entire 

solution set. 

Multi-objective problems take the form of linear (MOLP), integer (MOIP), and 

mixed integer (MOMIP) which have continuous, discrete, and both continuous and 

discrete solutions respectively. Due to the nature of MOMIP, there are several different 

types of problems. In this paper we will focus mainly on bi-objective mixed integer 

programming problems and the generation of only extreme supported non-dominated 

solutions for general MOMIP problems. There are many studies that deal with MOIP 

and MOLP problems independently, but there is a lack of literature for their hybrid, 

MOMIP. Due to the nature of their solutions, MOIP and MOLP cannot be directly used 

to solve MOMIP. 

This paper focuses on compiling and summarising articles published in the 

English language for MOLP, MOIP and MOMIP problems, with additional updates of 

recent developments since surveys like Ehrgott and Gandibleux (2000) and Ruzika and 

Wiecek (2005). It should be assumed that the algorithms generate all non-dominated 



 

 

solutions in the objective space unless stated otherwise. There are many reasons as to 

why the more recent algorithms solve in this objective space instead of the decision 

space. The objective space is typically much smaller than the decision space because in 

almost every case there are fewer objectives than decision variables. This simplifies the 

problem and it becomes less computationally demanding. Efficient solutions in the 

decision set were also proved to frequently map onto the same solution of the outcome 

set by Benson (1995), leading to redundant solutions in the decision set. Algorithms that 

solve in the decision space like Steuer (1986), Armand and Malivert (1991), Armand 

(1993) and Sayin (1996) are hard to apply practically as computational demands 

increase substantially as problem size increases.  

In Section 2 the general formulation and concepts of multi-objective 

optimisation problems are outlined. In Section 3 a classification scheme is defined for 

clustering the approaches in Section 4. The most popular methods that are used in the 

review will be clarified in Section 3 to avoid repeating explanations in Section 4. 

 

2 Properties of multi-objective optimisation problems 

 

A multi-objective mixed integer programming problem is formulated as: 

           )      )        ))  

                 
where                               is the set of all feasible solutions. 

The solutions    and    denote the set of feasible solutions for multi-objective linear 

and integer problems respectively.         is an     matrix of the   constraints 

and   decision variables and      is the corresponding right hand side.     is a 

    matrix that represents the     objective functions to be minimised. The 

outcome set of the solutions is defined as: 

                  
Set   and   are known as the decision space and objective space, respectively. 

The following notation is used for          : 
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The Pareto cone is defined as: 

  
                        

Consider points       . A feasible solution       is called efficient/Pareto 

optimal if there exists no   such that       . The outcome of   ,    is then called 

non-dominated. If   
      for all  , then   

  strictly dominates   . Otherwise,   
  is 

weakly non-dominated. A supported non-dominated solution is a Pareto solution that is 

the optimal solution to the weighted sum single-objective problem: 
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If an existing efficient solution cannot be found by solving the above problem, it is an 

unsupported non-dominated solution. 

Let     denote the set of non-dominated points. For any      ,       denotes 

a convex combination of all the non-dominated points, excluding  . There can be three 

types of non-dominated points. They are: 

 Extreme supported if and only if there exists no          



 

 

 Non-extreme supported non-dominated if there exists no         but there 

exists         

 Unsupported non-dominated if there exists         

 

3 Classification of approaches 

 

The approaches within each problem type will firstly be grouped by the methods which 

they employ and then chronologically. There are other methods for solving problems, 

e.g. Lin, Zhu and Sheng (2003) use homotopy to find efficient solutions for convex 

multi-objective programming. However, only the most popular methods used in the 

approaches reviewed in this paper are listed below in this section.  

 Weight space decomposition refers to the partitioning a weight set and solving 

the weighted sum single-objective problem.  

 The  -constraint method was first introduced by Haimes, Lasdon and Wismer 

(1971). This method chooses a single-objective to be optimised while every 

other objective is treated as a constraint. The extreme point that is computed is 

then used to determine the bound on the objectives, and this is repeated until 

there are no new solutions left. 

 The branch and bound method uses a tree structure and each node branches out 

into sub-problems until all sub-problems are solved. 

 Duality refers to the relationship between the primal and dual LP 

                   and                    . If both the primal 

and dual LP are feasible, they both have optimal solutions    and    that 

satisfy          , i.e. the minimal element of the primal is equivalent to the 

maximal element of the dual in the outcome set. 

 The two phase method by Ulungu and Teghem (1995) involves finding all 

supported non-dominated solutions by solving the weighted sum problem in the 

first phase and finding all other non-dominated solutions in the second phase, 

usually using enumerative techniques which develop search spaces from the 

supported non-dominated solutions found in the first phase. 

4 Approaches 

 

4.1 Linear Programming 

 

In MOLP problems, all objectives are linear and must be optimised over a convex 

polyhedron. MOLP problems are solved as subproblems for MOIP and MOMIP and all 

non-dominated solutions of MOLP are supported. MOLP problems are popular and 

there is a lot of literature that covers finding the efficient set, some of which are covered 

in this section. 

Benson (1998a) generates an outer approximation algorithm in the outcome 

space. The main advantage of this algorithm is that there is no need for backtracking or 

bookkeeping which is needed when solving in the decision space, as in Benson (1997). 

This method is later implemented into Benson (1998b) which introduces a hybrid vector 

maximisation approach which was first introduced by Kuhn and Tucker (1951). Benson 



 

 

incorporates the special simplicial partitioning technique used by Ban (1983) and Tuy 

and Horst (1988) into the outcome space using outer approximation. First, a point   that 

lies in the interior of the efficiency-equivalent polyhedron   is created along with its 

simplex,   , and vertex set,     ). At the     iteration, the algorithm examines the set 

of all vertices,     ) of the current compact polyhedron    that contains  . The 

algorithm terminates if each element of     ) belongs to   because     . Otherwise, 

a new polyhedron,          that contains Y, is created by adding a linear equality 

to   . The vertex set       ) is then computed and the algorithm continues until 

     is satisfied. Later in Benson (1998c) it was found that this algorithm also 

generated weakly efficient points in the outcome space. 

Benson and Sun (2000) proved that a feasible basis for the linear program LP(w) 

      )    

                
The weight set  

   {    |              } 
can be decomposed into a finite union of subsets with a one-to-one correspondence 

between the weights and efficient extreme solutions in the outcome space. Using this 

result, Benson and Sun (2002) develop a weight set decomposition algorithm. At each 

step  , a weight    is chosen and the LP is solved for an optimal extreme point 

solution. Each subsequent weight is found by initialising a global tree search method. If 

no more weights can be found then the algorithm terminates.  

Ehrgott, Puerto and Rodrigues-Chia (2007) use the scalarisation theorem and 

single-objective duality theory to develop a new algorithm. This algorithm focuses on 

applications in network optimisation problems. Luc (2011) introduces two approaches 

to duality, one based on the duality relationship between minimal and maximal elements 

of a set and its complement, and another using polarity between convex polyhedral sets 

and the epigraph of its support function. Improvements to existing duality relations are 

also explored. Ehrgott, Lohne and Shao (2012) use geometric duality theory to derive a 

dual variant of the algorithm of Benson (1998b). This method constructs the dual 

extended image instead of the primal image. Once the dual image is obtained, geometric 

duality is used to obtain the primal image. 

Ida (2005) uses an extreme ray generation method to sequentially generate 

efficient points and rays. This is done by adding inequality constraints to the polyhedral 

feasible region. In the algorithm, objective values for each extreme ray are obtained and 

tested for efficiency. A new efficient ray is generated if the pair of extreme rays have 

efficient solutions when one of the efficient solutions is eliminated in the row process 

step. All efficient extreme rays and points are obtained when all the rows have been 

checked. 

Krichen, Masri and Guitouni (2012) generate maximal efficient faces using 

adjacency between efficient extreme points. This algorithm explores efficient extreme 

points and uses simplex pivots to find adjacent vertices of the current extreme point. 

Initially an efficient extreme point is found and at each iteration thereafter, 

combinations of these points are generated to define frontiers of the efficient faces.  

 

4.2 Integer Programming 

 

The main difference between MOLP and MOIP problems is that MOIP objectives are 

discrete, not continuous. The introduction of integer variables allows for feasible 



 

 

solutions that no longer lie on a line segment. This leads to the existence of non-

supported efficient solutions which are much harder to find. Some of the methods used 

in finding these non-supported are explained here. 

In bi-criteria problems, it is well known that        subproblems must be 

solved to generate all non-dominated solutions, where   is the non-dominated set. 

Initially     subproblems are solved to generate all points in  , and then       more 

subproblems are solved to make sure that there are no more non-dominated points that 

exist between the ones that have already been generated. Laumanns, Thiele and Zitzler 

(2006) used an adaptive  -constraint method and showed that problems of higher 

dimensions require a bound of         ), where   is the number of objectives. 

Dächert and Klamroth (2013) develop an algorithm that needs to solve at most        

subproblems for tri-criteria problems.  

Przybylski, Gandibleux and Ehrgott (2010a) generalise the two-phase method 

and apply it to the tri-objective assignment problem. Appropriate lower and upper 

bounds are computed and used to update the initial search space from the first phase. 

Any upper bounds that are dominated are removed and any non-supported non-

dominated point that is found is inserted into the updated search space. The approach of 

Dächert and Klamroth (2013) use is similar to this, but filter out redundant search areas. 

Due to the issues the classical  -constraint method had with finding weakly 

efficient solution, Mavrotas (2009) introduced an augmented  -constraint method which 

augments the objective function using the weighted sum of extra slack or surplus 

variables. This method was improved by Mavrotas and Florios (2013) specifically for 

MOIP problems and required fewer subproblems to be solved. Zhang and Reimann 

(2013) develop a variation of the augmented  -constraint method called the simple 

augmented  -constraint method which improves through using an acceleration 

algorithm with an early exit and an acceleration algorithm with bouncing steps. The 

algorithm of Özlen and Azizoğlu (2009) recursively solves problems with lesser 

objectives using the  -constraint method. The objective functions are minimised and 

maximised to generate the ranges for the non-dominated set which are then used to 

solve for all non-dominated solutions. The algorithm was later improved by Özlen, 

Burton and MacRae (2013). Kirlik and Sayin (2014) find the non-dominated set using a 

search space of     ) dimensions. This algorithm uses rectangles in the search space, 

with the initial rectangle covering the (   ) dimensional space. Each rectangle is 

defined using lower and upper bounds. These lower and upper bounds are found by 

minimising and maximising each objective function, respectively. The rectangles are 

partitioned into smaller disjoint rectangles and this is repeated until there are no 

rectangles left to search. 

Klein and Hannan (1982) propose a sequential generation method for finding all 

non-dominated solutions in the decision space. This method solves a sequence of 

progressively more constrained single-objective integer problems. At each step a new 

constraint is added which excludes previously generated efficient points. This allows 

points which are dominated by the generated non-dominated solutions to be eliminated. 

A variation of this method is used by Sylva and Crema (2004) which sequentially solves 

weighted sum problems instead of single-objective problems and later, Sylva and 

Crema (2007) propose another variant that finds a well-dispersed subset of non-

dominated points. An improvement of the algorithm by Sylva and Crema (2004) is 

developed by Lokman and Köksalan (2012) which decreases the number of additional 

constraints to be added at each step.  



 

 

Lemesre, Dhaenens and Talbi (2007) propose parallel partitioning method 

(PPM) to solve bi-objective problems. This method uses three stages to determine the 

entire Pareto front. Firstly, the problem is solved for extreme solutions to limit the 

search space. Next, the search space is divided up by searching the efficient solutions. 

Lastly, the solutions found from the previous stage are used to find any other efficient 

solutions. An extension of this method for any number of objectives is done by 

Dhaenens, Lemesre and Talbi (2010).  

 

4.3 Mixed Integer Programming 

 

MOMIP problems are the hybrid of MOLP and MOIP problems. There are several 

types of problems within MOMIP itself due to the combination of continuous and 

integer variables. So far, there is no existing algorithm that can solve for mixed 0-1 

integer programs with     objectives and no general algorithm to find all non-

dominated solutions. There is a lack of literature for MOMIP problems but some of the 

methods that do exist are covered here. 

Mavrotas and Diaokoulaki (1998) modify the single-objective branch and bound 

algorithm to find efficient solutions in mixed 0-1 MOLP problems in the decision space. 

Initially all binary variables      are considered free variables relaxed to          

and at the following branch of the combinatorial tree an additional binary variable will 

become fixed until eventually all combinations are found and the MOLP problem with 

the fixed binaries are solved. The corresponding non-dominated points to these nodes 

are stored and updated in    . Dominated points are removed from     and non-

dominated points are added. Later, Mavrotas and Diaokoulaki (2005) further extend to 

find the efficient solutions of this problem using a vector maximisation approach of the 

branch and bound method. This algorithm was found to be missing some efficient 

solutions by Vincent (2009) and Vincent, Seipp, Ruzika, Przybylski and Gandibleux 

(2013) who then correct the work of Mavrotas and Diakoulaki (2005) in the bi-objective 

case and explain the issues of the algorithm. Jozefowiez, Laporte and Semet (2012) 

propose a general multi-objective branch and bound method which does not iteratively 

solve single-objective problems. The lower and upper bounds are defined as sets of 

points in the objective spaces instead of being single values. Stidsen, Andersen and 

Dammann (2014) use branch and bound to find all non-dominated solutions for bi-

objective mixed integer problem where all integers must be binary and only one of the 

objectives may be a continuous. This algorithm first solves the problem with all binary 

values as free variables. Branching is done on the relaxed binary variables and in each 

node, a six-tuple of values are saved. The algorithm will try to fathom a solution from 

the six-tuple until there are none left to fathom.  

Przybylski, Gandibleux and Ehrgott (2010b) develop some additional properties 

for the weight space for MOMIP and develop their algorithm based on this. The 

algorithm utilises the bi-objective algorithms of Cohon (1978) and Aneja and Nair 

(1979) and recursively reduces multi-objective problems into bi-objective problems 

which can then solved by the bi-objective algorithms. Özpeynirci and Köksalan (2010) 

utilise some of the properties found in Przybylski et al. (2010b) to find all extreme 

supported non-dominated solutions in general MOMIP problems of any objectives. This 

method introduces dummy points into the weight space decomposition. A sufficiently 

small   is chosen to guarantee that one of the dummy points will minimise the resulting 

objective function if any weight is close to zero. Adjacent points are used to determine 



 

 

boundaries of the weight space decomposition and at each iteration, new extreme 

supported non-dominated points or convex combinations are found until they have all 

been identified.  

 

5 Summary  

 

This literature review serves as an overview of the research that has been done in 

solving problems of MOLP, MOIP and MOMIP. This literature review is not a 

complete review as there is ongoing research for each of these problems and time 

constraints did not allow for a full review for every problem.  

 

6 Further Research 

 

There are many more methods and approaches that have not been included in this 

survey and a more complete version would be beneficial to eventually developing a 

general algorithm to solve for all efficient solutions in MOMIP problems.   
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