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1 Introduction

Hurwitz Numbers enumerate branched covers of sphere. They were introduced in
the late 19th century by A. Hurwitz but have recently been studied as they have
connections to combinatorics, algebraic geometry and theoretical physics. The aim of
my project was to understand a proof of a polynomialy property of the simple Hurwitz
numbers and to try to apply the ideas used to find a proof of the generalised spin
Hurwitz numbers.

2 Hurwitz Numbers

The simple Hurwitz number H◦g,n(µ1, . . . , µn) is the weighted count of branched covers
from a connected genus g surface, with n marked points to CP1 (the sphere), where
each of the n points map to∞ with branching degree µi, and the only other branching
is simple branching at m other points on CP1. The Riemann-Hurwitz formula gives

m = 2g − 2 + n+
n∑
i=1

µi.

Proposition 2.1. H◦g,n(µ1, . . . , µn) = 1
d!
× # m-tuples(σ1, σ2, ..., σm) where each σi ∈

Sd is a transposition, and σ1σ2...σm has cycle type (µ1, ..., µn) and the subgroup 〈σ1, σ2, ..., σm〉 ⊂
Sd acts transitively on the set {1, 2, . . . , d}.

We say 〈σ1, σ2, ..., σm〉 acts transitively on {1, 2, . . . , d} if there is a permutation in



〈σ1, σ2, ..., σm〉 that takes any element of {1, 2, . . . , d} to any other element. This condi-
tion is required to ensure the surface covering CP1 is connected, if we consider possibly
disconnected coverings, which we denote Hg,n(µ1, . . . , µn) we do not require transitivity.

For example the permutation (123) acts transitively on {1, 2, 3}, however (12) does not
act transitively on {1, 2, 3} as there is no way to map 1 to 3 using (12).

A proof of this proposition can be found in [2] and relies on an idea known as mon-
odromy. Typically Hurwitz numbers are defined this way. The advantage of this second
definition is that we can calculate the number of these tuples of transpositions using
characters from the representation theory of the symmetric group. We will use this to
calculate Hurwitz numbers in the infinite wedge space.

3 Infinite Wedge Space

The Infinite Wedge Space is an infinite dimensional complex vector space, spanned by
the vectors

= s1 ∧ s2 ∧ s3 ∧ · · ·

Where {s1 < s2 < s3...} and each si ∈ Z + 1/2. We also require that for sufficiently
large n we have sn = sn+1.

The wedge product ∧ satisfies k1 ∧ k2 = −k2 ∧ k1 for k1, k2 ∈ Z + 1/2. Given a set
S = {s1 < s2 < s3...} we denote the vector s1 ∧ s2 ∧ s3 ∧ · · · as vS.

Usually we only consider a subspace of the infinite wedge space by adding the require-
ment that si = −i+1/2 for sufficiently large i and only consider sets with this property.
This is called the zero charge subspace and allows a simple graphical representation
of vS as follows, whenever s ∈ S we draw a line segment with gradient −1 which we
call a downstep, at s. When s /∈ S we draw a line segment with gradient 1 at s. For
example the set {5/2, 1/2,−3/2,−5/2,−9/2,−11/2, . . .} gives the diagram



0 1 2 3-2 -1-3-4

For such a set S we can associate a partition λ = {λ1 ≥ λ2 ≥ · · · ≥ λk} with
∑
i

λi = d

such that si = λi − i + 1/2, or λi = si + i − 1/2. In the previous example we have
λ = {3, 2, 1, 1}. The integer d then gives the total number of ‘boxes’ in the diagram
and λ tells us how they are arranged. Given a partition λ corresponding to a set S we
use vλ to denote the same vector as vS.

The dimension of a partition, dimλ, is defined as the number of standard Young
tableaux of shape λ.

A standard Young tableau of shape λ is given by rows of boxes corresponding to
the partition, where each of the boxes has one of the numbers from 1 to d and each
row (left to right) and column (top to bottom) are in increasing order. For example;
dim(3, 1) = 3 as we have

1 2 3

4

1 3 4

2

1 2 4

3

3.1 Operators on the Infinite Wedge Space

We define the operators ψk, often called fermionic operators, on the infinite wedge
space for k ∈ Z + 1/2 where

ψkvS = k ∧ s1 ∧ s2 ∧ s3 ∧ · · ·



=

{
± vS∪{k} if k /∈ S
0 if k ∈ S

The sign is given by (−1)# s∈S | s>k which comes from rearranging the wedge product.

The operator ψ∗k is the adjoint of ψk with respect to the orthonormal inner product,
which satisfies (ψ∗kvS1 , vS2) = (vS1 , ψkvS2).

ψ∗kvS =

{
±vS\{k} if k ∈ S
0 if k /∈ S

Where the sign is again given by (−1)# s∈S | s>k. Note that ψk increases the charge by
1, and ψ∗k decreases the charge by 1.

The ψ operators satisfy the following anti-commutation relations

[ψk, ψl]+ = 0

[ψ∗k, ψ
∗
l ]+ = 0

[ψ∗k, ψl]+ = δk,l

Where the anti-commutator [a, b]+ is ab+ ba.

Graphically ψk changes an upstep to a downstep at k if possible, and ψ∗k changes a
downstep to an upstep at k if possible.

Because the ψ operators change the charge of the vector we usually apply them together
to stay within the zero charge subspace.

We define the normally ordered product as follows

Ei,j := : ψiψ
∗
j : :=

{
ψiψ

∗
j , if j > 0

−ψ∗jψi, ifj < 0

As ψi and ψj anti-commute if i 6= j the normal ordering only matters when i = j.
Normal ordering is important as it regularises certain sums that arise.



We also define the bosonic operators αn for n 6= 0

αn =
∑

k∈Z+1/2

ψk−nψ
∗
k

The adjoint of α can be computed in terms of the adjoint of the ψ operators.

We have

α∗n = (
∑

k∈Z+1/2

ψk−nψ
∗
k)
∗

=
∑

k∈Z+1/2

ψ∗∗k ψ
∗
k−n

=
∑

k∈Z+1/2

ψk+nψ
∗
k

= α−n

The α operators satisfy the following commutation relation.

[αn, αm] = nδn+m,0

We think of αn as removing a ribbon of n boxes from vλ and summing over all ways
this is possible, and α−n as adding a ribbon of n boxes.

For example starting with v3,2,1,1

α3 will try to remove 3 connected boxes from v3,2,1,1, there is only 1 way this is possible
which gives α3v3,2,1,1 = −v1,1,1,1 as shown below. The coefficient −1 is due to the sign
discussed earlier.



The removed boxes are shown by the dotted lines.

Similarly we could add a box to v3,2,1,1 in 4 different ways and we get α−1v3,2,1,1 =
v4,2,1,1 + v3,3,1,1 + v3,2,2,1 + v3,2,1,1,1.

If we apply α1 d times to the empty partition v∅ we find that

αd1v∅ =
∑
|λ|=d

dimλvλ

Where |λ| =
∑
i

λi. We can use this to generalise the concept of dimension to count the

number of ways add arbitrary ribbons to v∅. For another partition µ = (µ1, µ2, . . . µk)
with |µ| = |λ|. χλµ is the character from the representation theory of the symmetric
group. It can be shown using the Murnaghan-Nakayama rule that

n∏
i=1

αµi =
∑
|λ|=d

χλµvλ

Note that χλ1,...,1 = dimλ.

We can now calculate Hurwitz numbers in the infinite wedge space.

Proposition 3.1. Hg,n(µ1, . . . , µn) = |Cµ|
d!
〈eα1Fm2

n∏
i=1

αµi〉

The expectation 〈A〉 of an operator A is (v∅, Av∅).

Proof. Recall the definition of disconnected Hurwitz numbers

Hg,n(µ1, . . . , µn) = 1
d!
×# m-tuples(σ1, σ2, ..., σm) where each σi ∈ Sd is a transposition,

and σ1σ2...σm has cycle type (µ1, ..., µn).



This is given by the Burside formula, using representation theory. We have

Hg,n(µ1, . . . , µn) =
1

d!

∑
|λ|=d

dimλ|Cµ|χλµ
d!

f2(λ)m

Where f2(λ) = 1
2

∞∑
i=0

[(λi− i+1/2)2− (−i+1/2)2]. Define F2 such that F2vλ = f2(λ)vλ.

|Cµ| denotes the number of permutations in Sd with cycle structure µ.

We previously showed that αd−1v∅ =
∑
|λ|=d

dimλvλ and that
n∏
i=1

αµi =
∑
|λ|=d

χλµvλ.

So we have

(αd−1v∅,Fm2
n∏
i=1

αµiv∅) = (
∑
|λ|=d

dimλvλ,Fm2
∑
|λ|=d

χλµvλ)

= (
∑
|λ|=d

dimλvλ,
∑
|λ|=d

χλµf2(λ)mvλ)

=
∑
|λ|=d

dimλχλµf2(λ)m(vλ, vλ)

Then using the property of the adjoint and multiplying through by |Cµ|
d!2

we have

|Cµ|
d!2

(v∅, α
d
1Fm2

n∏
i=1

αµiv∅) =
|Cµ|
d!2

∑
|λ|=d

dimλχλµf2(λ)m(vλ, vλ)

= Hg,n(µ1, . . . , µn)

Finally we use the taylor expansion of eα1 and note that only the αd1 term contributes
to the inner product as it is orthonormal. So we have

Hg,n(µ1, . . . , µn) =
|Cµ|
d!
〈eα1Fm2

n∏
i=1

αµi〉

Having shown that we can express Hurwitz numbers in the infinite wedge space we can
now state the following theorem and give an outline of its proof.



Theorem 3.2. The simple Hurwitz numbers satisfy the following polynomiality rela-
tion for (g, n) 6= (0, 1) or (0, 2).

H◦g,n(µ1, . . . , µn) = m!
n∏
i=1

µµii
µi!

Pg,n(µ1, µ2, . . . , µn)

Where Pg,n(µ1, µ2, . . . , µn) is a polynomial in the variables µ1, µ2, . . . , µn.

This was first proved in 2001 by Ekedahl, Lando, Shapiro and Vainshtein using quite
advanced algebraic geometry. This proof gives explicit coefficients for the polynomial
and the result is known as the ELSV Formula.

A second proof was given in 2013 by Dunin-Barkowski, Kazarian, Orantin, Shadrin
and Spitz using the infinite wedge space. We will give a brief outline of this proof here.
See [1] for the full proof.

First we define a genus generating function for the (possibly disconnected) simple
Hurwitz numbers.

hµ(u) =
∞∑

g=−∞

um

m!
Hg,n(µ1, . . . , µn)

The sum starts at −∞ as disconnected surfaces can have negative genus. We then
use our formula for the disconnected Hurwitz numbers using our infinite wedge space
construction. As in [1] we ignore the |Cµ|/d! term as it is not particularly important.
So we have

hµ(u) =
∞∑

g=−∞

um

m!
〈eα1Fm2

n∏
i=1

αµi〉

We then bring the sum into the inner product

hµ(u) = 〈eα1

∞∑
g=−∞

umFm2
m!

n∏
i=1

αµi〉

= 〈eα1euF2

n∏
i=1

αµi〉

Since e−α1v∅ = v∅ and e−uF2v∅ = v∅ we have



hµ(u) = 〈eα1euF2

n∏
i=1

αµie
−α1e−uF2〉

= 〈
n∏
i=1

(eα1euF2αµie
−α1e−uF2)〉

It can then be shown after some calculations that

eα1euF2αµie
−α1e−uF2 =

uµiµµii
µi!
A(µi, uµi)

Where the operator A is defined as follows

A(a, b) := (
eb/2 − e−b/2

b
)a
∑
k∈Z

a!(eb/2 − e−b/2)k

(a+ k)!
Ek(b)

And

Ek(b) :=
∑

i∈Z+1/2

eb(i−k/2)Ei−k,i +
δk,0

eb/2 − e−b/2

We can then show that

hµ(u) = ud
n∏
i=1

µµii
µi!
〈
n∏
i=1

A(µi, uµi)〉

The rest of the proof uses a result from Okounkov and Pandharipande [3], that we can
express the A operators as a Laurent series. It is then shown that for fixed powers of
u the degree of the µi are bounded. As well as there are only negative powers of µi for
terms in the series that correspond to pairs (g, n) = (0, 1) or (0, 2).

4 Spin Hurwitz Numbers

Spin Hurwitz numbers are a generalisation of Hurwitz numbers that allow for more
general branching at the other points on CP1.

Let µ be a partition of d, r ≥ 1 be an integer and m = 2g−2+n+d
r

.

Then the Spin Hurwitz Number is defined as



Hr
g,n(µ1, ..., µn) = 1

d!
× number of m-tuples(σ1, σ2, ..., σm) where each σi ∈ Sd is a com-

pleted (r + 1) cycle, and σ1σ2...σm has cycle type (µ1, ..., µn).

After learning about the polynomiality property of Hurwitz numbers the remaining
time of my project was spent on trying to find a proof for an analogous result for
spin Hurwitz numbers which are conjectured to satisfy the following quasi-polynomial
relation by trying to generalise the method used in [1]

Conjecture 4.1.

H(r)
g,n(µ1, . . . , µn) = m!r2g−2+n+m

n∏
i=1

(µi/r)
bµi/rc

bµi/rc!
P (r)
g,n(µ1, µ2, . . . , µn)

Where P
(r)
g,n(µ1, µ2, . . . , µn) is a quasi-polynomial mod n in the variables µ1, µ2, . . . , µn.

A Quasi-polynomial (mod n) is a function f : Z → R such that f(x) = fi(x) for a
polynomial fi when x ≡ i (mod n).

Although we did not find any results during this summer project we plan to continue
looking at similar problems during my honours year.

I thoroughly enjoyed the project and had a great experience meeting other maths stu-
dents at the Big Day In. The Vacation Research Scholarship has helped me experience
first-hand what maths research is like and I look forward to continuing my studies in
maths in the next few years. I would like to thank my supervisor Dr. Norm Do for
his help and support throughout this project. I would also like to thank AMSI and
CSIRO for their generous funding and for hosting the Big Day In.
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