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Introduction

The correlated random walk is a random walk in which the probability of moving in a
particular direction is dependent on the direction in which the agent last moved. This
model has applications in many fields, particularly biology; for example, moving cells
are likely to have a persistence of direction where they are more likely to move in the
direction they are facing, and thus this makes the correlated random walk model more
accurate than a simple random walk model for the same system.

This process without exclusion has been studied by various authors; in particular,
Renshaw and Henderson (1981, 1984) have shown that for a single walker the process
is equivalent to a diffusion process in both one and two dimensions, with the diffusion
coefficient based on the probability of moving in each direction relative to the last
move. However, most such analysis has been based on a single walker or one whose
movement is unobstructed.

The objective of this paper is to consider the case in which many such random
walkers are moving on a one-dimensional lattice and interact with each other through
simple exclusion, in other words any attempts to move into occupied lattice spaces
are aborted. This captures an important aspect of multi-agent systems where agents
are often unable to move into the immediate vicinity of other agents due to volume or
other constraints.

Analysis

The base discrete model used in this paper considers agents occupying sites of a one-
dimensional lattice. The possible location of an agent is given by a single integer
coordinate i. Reflecting boundaries are imposed on the lattice.



Let pf be the probability that the agent moves in the same direction it last moved if
it has the opportunity, and pb be the probability that it moves in the opposite direction.
To simplify calculations, and noting that on conversion to a continuous system a time
step will be introduced that can be varied depending on the number of moves desired
per time unit, it is assumed that pf + pb = 1.

Define pn,l(i) to be the probability that there is an agent in lattice space i at time
n whose last move was left, and pn,r(i) to be the probability that there is an agent in
lattice space i at time n whose last move was right. Define pn(i) = pn,l(i) + pn,r(i).

A conservation-of-agent statement for the probability of position i being occupied
after n time steps under the correlated random walk with simple exclusion is:

pn+1,l(i) = pn,l(i) [1− pf (1− pn(i− 1))− pb(1− pn(i+ 1))] (1)

+(1− pn(i))(pfpn,l(i+ 1) + pbpn,r(i+ 1)) (2)

pn+1,r(i) = pn,r(i) [1− pn(1− pn(i− 1))− pf (1− pn(i+ 1))] (3)

+(1− pn(i))(pbpn,l(i− 1) + pfpn,r(i− 1)) (4)

The red terms have been derived through mean-field arguments by assuming inde-
pendence between the occupancy of adjacent sites, and represent the probability that
the space that the agent is attempting to move into is open, since moves are only
allowed if this is true.

Continuum limit

The ultimate goal of this analysis is to derive a partial differential equation description
of the system. To this end we convert the discrete model into a continuous model by
introducing a unit of length ∆ called the lattice spacing and a unit of time τ called the

time step. Let x = ∆i and t = nτ . Let c(x, t) =

(
pn,l(i)
pn,r(i)

)
and c(x, t) = [1 1]c(x, t).

Substituting into the above equations results in the following:

c(x, t+ τ) =

(
c(x+ ∆, t)

[
pb 0
0 pf

]
+ c(x−∆, t)

[
pf 0
0 pb

])
c(x, t)

+ (1− c(x, t))
([

pf pb
0 0

]
c(x+ ∆, t) +

[
0 0
pb pf

]
c(x−∆, t)

)
(5)



At this point we apply partial Taylor expansions to derive a partial differential
equation. The Taylor expansions are taken to the first order in τ and the second order
in ∆.

c + τ
∂c

∂t
+ o(τ)

=

(
(c+

∆2

2

∂2c

∂x2
+ o(∆2))

[
1 0
0 1

]
+ (∆

∂c

∂x
)

[
pb − pf 0

0 pf − pb

])
c

+(1− c)
([

pf pb
pb pf

]
(c +

∆2

2

∂2c

∂x2
+ o(∆2)) +

[
pf pb
−pb −pf

]
∆
∂c

∂x

)
(6)

To simplify the system into a system of scalars, we introduce a new variable
φ(x, t) = [1 − 1]c(x, t). The introduction of this variable means that we have now
decomposed the variable c into symmetric and anti-symmetric components (c and φ
respectively). In particular,

c =
1

2

(
c

[
1
1

]
+ φ

[
1
−1

])
. (7)

After substituting this into (5), some simplification, dropping the o(·) terms and

equating the coefficients of

[
1
1

]
and

[
1
−1

]
we eventually derive the following system

of equations:

∂c

∂t
=

∆

τ

∂c

∂x
φ(pb − pf ) + (1− c)(pf − pb)

∆

τ

∂φ

∂x
+

∆2

2τ

∂2c

∂x2
(8)

∂φ

∂t
= −2pb(1− c)φ+

∆2

2τ

∂2c

∂x2
φ+

∆

τ

∂c

∂x
(1− 2pfc) + (1− c)∆2

2τ

∂2φ

∂x2
(pf − pb) (9)

In these equations’ current state we cannot take the continuum limit as ∆→ 0 and
τ → 0, because the ratio of ∆2

τ
needs to be held constant, but there are many terms

which will disappear when the limit is taken which is not a sensible limit. For this
reason another step needs to be taken before the limit can be applied. The method
used here is to scale the variable φ so that it disappears in the continuum limit, in
other words let φ = ∆Φ.

After bringing τ back to the left-hand side in (8) we take the continuum limit and
simplify. We then find that the model reduces to the following one-dimensional partial
differential equation:

∂c

∂t
= D

∂

∂x

((
1

2
− c(pf − pb)

)
∂c

∂x

)
, where D = lim

∆,τ→0

∆2pf
τpb

(10)



This corresponds to a non-linear diffusion equation, which indicates that the system
behaves as a system of particles diffusing at a rate dependent on the concentration.

Comparison with simulation, discussion and conclu-

sions

There are many ways to simulate random walk models of agent motility. The one
used in this analysis is where there are N agents present, and in each update N move
attempts occur, each of which is made by a random independently chosen agent. This
is known as random sequential update (Chowdrury et al. 2005). An agent is selected
once on average but may be selected more than once or not at all.

Figure 1: Red: Average of 10000 simulations. The state of the system is shown at
times n = 0, 50, 100, 200. The horizontal axis denotes position and the vertical axis
denotes concentration. Blue: PDE approximation. The state of the system is shown
at times n = 0, 50, 100, 200. The horizontal axis denotes position and the vertical axis
denotes concentration.

Simulations were performed on a one-dimensional lattice of width 201 sites, with
0 ≤ i ≤ 200. The left diagram displays the average of 10000 simulations at times
n = 0, 50, 100, 200 for pf = 0.6. The right diagram shows the numerical solution of
(10) for the initial condition where sites 90 ≤ i ≤ 110 are occupied and all other
sites are vacant. It can be seen that the PDE approximation is a reasonable though
not perfect fit with the simulation data, particularly at the centre where the agents



are initially most concentrated. Conversely, further away from this point the fit is
almost perfect. Reasons for the discrepancy may include correlation effects between
site occupancy, or effects caused by the simplification due to the scaling.

It should be noted that the partial differential equation description fails whenever
pf is above 0.75 and the concentration is sufficiently large, since the effective diffusion
coefficient in that case becomes negative. As a result, attempting to solve the PDE
in this case results in the concentration diverging at the edges of the initial block of
agents, as well as turning negative in some regions. Resolving this problem is left to
future research.
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