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Abstract

In the last eight years great progress has been made towards de-
veloping new analytical solutions that describe nonlinear reaction and
diffusion in a porous slab. This is a classical engineering problem
with many industrical applications. Historically it has been studied
by means of numerical analysis due to the nonlinearity of the govern-
ing partial differential equation. Recently attention has been given to
solution of this problem through the application of Adomian’s decom-
position method [1] and the Homotopy Analysis Method (HAM) [2].
The application of these methods led to the derivation of an analyti-
cal solution, formulated in terms of Gauss’s hyper-geometric function
by Magyari in 2008 [3]. However, the current solutions do not take
advection into account. In this paper, we derive, by use of Adomi-
ans decomposition method, the Maclaurin series of the function in
question.

1 Introduction and Formulation of Problem

An important problem in chemical engineering is to accurately predict reac-
tion and diffusion rates in porous catalysts when the reaction rate is a non-
linear function of the concentration [4]. If the diffusion occurs in a porous
slab that is infinite in two dimensions then the concentration function C(x, t)
is governed by [4]:

∂C

∂t
= D

∂2C

∂x2
− V ∂C

∂x
− kCn (1)

Where D denotes the effective diffusion coefficient, k denotes the reaction
rate, n denotes the order of the reaction and V is the advective velocity. This
equation is subject to the boundary conditions:
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∂C

∂x

∣∣∣∣
x=0

= 0

C(L, t) = Cs

Where Cs denotes some constant concentration at x = L. In particular,
we are interested in determining the concentration profile once the system
has reached equilibrium, in which case we can assume that the time deriva-
tive is zero.
Much study has been given to the specific case in which no advective trans-
port is considered. An exact analytical solution to the linear form of this
equation without the advection term was derived by Thiele in 1939 [4]. More
recently, in the case where there is no advection (but the equation remains
nonlinear) an exact analytical solution has been derived by E. Magyari [3].
However, no analytical solution is currently known for equation (1) in its
general form, and so, as a result, engineers are forced to rely upon compu-
tationally expensive numerical methods of solution. The objective of this
paper is to develop accurate series approximations for the equilibrium solu-
tion of C(x, t) by use of Adomian’s decomposition technique, and to further
generalise the results given by past investigators [1] [2] [3] [4].

2 Adomian Decomposition

Adomian’s decomposition method depends upon decomposing the nonlinear
differential equation:

F [C(x, t)] = 0 (2)

Into the three components:

L[C(x)] +R[C(x)] +N [C(x)] = 0 (3)

Where L[·] represents the highest order linear component of the operator,
N [·] represents the nonlinear component of the operator and R[·] represents
the remainder of the linear operator. The operator L[·] is assumed to be
easily invertible. In our particular case, we have to following definitions for
L, R and N .

L[·] = D
d2

dx2
[·], R = −V d

dx
[·], N = −k[·]n (4)

The inverse linear operator is thus:
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L−1 =
1

D

∫ ∫
dxdx (5)

Applying the inverse linear operator to equation (3) gives us the following.

C(x) = −L−1R[C(x)]− L−1N [C(x)] (6)

We now assume that C(x) can be represented as an infinite series of the
form:

C(x) =
∞∑

m=0

cm (7)

And we assume furthermore that the nonlinear term can be represented
as an infinite series of Adomian polynomials:

N [C(x)] =
∞∑

m=0

Am (8)

The Adomian polynomials Am are unique to the problem and are derived
from Adomian’s formulae [5]. It has been established that they converge very
quickly [5]. By substituting equations (7) and (8) into (6) we can derive the
following recurrence relationship:

cm = −L−1Rcm−1 − L−1Am−1 (9)

From this relationship, and Adomian’s formulae for his polynomials [5],
we can derive the following values for Am and cm:

A0 = −kcn0

c1 =
1

2!

kcn0x
2

D

A1 = − n
2!

k2c2n−10 x2

D

c2 =
1

3!

V kcn0x
3

D2
+
n

4!

k2c2n−10 x4

D2

A2 = − 1

4!

k2nx3(4V c2n0 + 4kc3n−10 x− 3kxc3n−10 )

c0D2

c3 =
1

6!

kx4(30V 2cn+1
o + 12knV c2n0 + 4k2n2x2c3n−10 − 3k2nx2c3n−10 )

c0D3

etc.
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From the above, and formula (7), we can now determine our approxima-
tion of C(x) to three terms as:

C(x) ≈ c0 +
k

D
cn0
x2

2!
+
kV

D2
cn0
x3

3!
+

(
k2

D2
nc2n−10 +

kV 2

D3
cn0

)
x4

4!

2nk2V c2n−10

D3

x5

5!
+

(4n2 − 3n)k3c3n−2o

D3

x6

6!
+O(x7)

As Adomian’s polynomials converge very quickly, for most problems 3 or 4
terms are sufficient for approximating the function in question [5]. However,
Sun et al. [1] have demonstrated that for equation (1) with V = 0 that
is not always the case. Accordingly we approximated C(x) to 8 terms by
use of the symbolic algebra software package Maple 13. The constant c0,
which is the quantity of main interest from an engineering standpoint, can
be derived from the above approximation for C(x) by applying the boundary
conditions for any choice of parameters, and then numerically solving the
resulting polynomial.

3 Accuracy of the Adomian approximation

There are two special cases of equation (1) for which an analytical solution
has been determined. The first is the case in which n = 1 in which case
a closed form analytical solution can easily be derived. The second is the
case in which V = 0 in which an analytical solution has recently been de-
rived by Magyari [3] in terms of a transcendental function known as Gauss’s
Hypergeometric function. These two cases are:

D
d2C

dx2
− V dC

dx
− kC = 0 (10)

D
d2C

dx2
− kCn = 0 (11)

The solution to equation (10) is:

C(x) = q1e
1
2

(V +
√

V 2+4kD)x
D + q2e

− 1
2

(−V +
√

V 2+4kD)x
D (12)

The constants q1 and q2 can easily be determined by the boundary con-
ditions but have been omitted here due to their complexity and length. The
full solution is included in appendix A. Magyari’s solution [3] to the second
case is:
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x =
1

φ

(
2

mcm−20

) 1
2
(
c

c0

)1−m
[(

c

c0

)m−1
] 1

2

F

(
1, 1− 1

m
;
3

2
; 1− c

c0

−m
)
(13)

Where m = n + 1, F denotes Gauss’s hyper-geometric function and φ
denotes the Thiele modulus [4]. The Thiele modulus is defined as:

φ =

√
kL2Cn−1

s

D
(14)

And Gauss’s hypergeometric function is defined as:

F (α, β, γ;x) = 1 +
∞∑
n=1

(α)n(β)n
n!(γ)n

xn (15)

Where:

(t)n =
Γ(t+ n)

Γ(t)
(16)

And Γ denotes the Gamma function.
The Adomian approximation to C(x) and the analytical solutions were

visually indistinguishable when graphed.
It is also possible to derive a numerical solution by discretising the prob-

lem. Using second order finite differences on equation (1) and the regular
lattice spacing ∆x, such that x = i∆x gives us the following stencil for
2 ≥ i ≥ n− 1:

D

(∆x)2
[ci−1 − 2ci + ci+1]−

V

2(∆x)
[ci+1 − ci−1]− kc1i cn−1i = 0 (17)

And the boundary conditions for i = 1 and i = n:

c1 = c2

cn = 1 (18)

The stencil (17) results in a tridiagonal matrix of the form:

U =
D

(∆x)2
− V

2∆x
(19)

D = − 2D

(∆x)2
− kcn−1i (20)

L =
D

(∆x)2
+

V

2(∆x)
(21)
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(Where D denotes the diagonal, U denotes the superdiagonal, L denotes
the subdiagonal and the right hand side vector is zero). The term kcn−1i was
approximated via the Picard method.

The Adomian polynomial taken to eight terms and the numerical ap-
proximation were visually indistinguishable. Figures 1 to 4 show the effect
of changes in the parameters k, V , D and reaction order n.

Figure 1: Our Adomian approximation of C(x) taken to 8 terms when n =
1, k = 1 and D = 1.
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Figure 2: Our Adomian approximation of C(x) taken to 8 terms when n =
1, V = 1, and D = 1.

Figure 3: Our Adomian approximation of C(x) taken to 8 terms when n =
1, k = 1 and V = 1.
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Figure 4: Our Adomian approximation of C(x) taken to 8 terms when k =
1, V = 1 and D = 1.

4 Comparison with Maclaurin series

Examination of the Maclaurin series for C(x) developed by the decomposition
technique led me to a different method for deriving the Maclaurin series for
C(x) from equation (1), which does not rely upon any specialised technique.
We begin by assuming that it is possible to write down the Maclaurin series
for C(x). If we are solving for equilibrium solutions then it is possible to
rearrange equation (1) into the form:

d2C

dx2
=

k

D
C(x)n +

V

D
· dC
dx

(22)

If we abide by the notation given earlier in this paper, then we also have
that:

C(0) = c0

dC

dx

∣∣∣∣
x=0

= 0 (23)

We can evaluate equation (22) at x = 0 by use of equations (23). Doing
so gives us:
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d2C

dx2

∣∣∣∣
x=0

=
k

D
· cn0 (24)

We can now differentiate equation (22) with respect to x to get an ex-
pression for C

′′′
(x).

d3C

dx3
=

k

D
nC(x)n−1

dC

dx
+
V

D

d2C

dx2
(25)

As we already know expressions for all the terms on the right hand side
of the above equation at x = 0, we can derive an expression for C

′′′
(0).

We can continue this process ad infinitum. By differentiating equation
(22) a sufficient number of times we can find an analytical expression for
any derivative of C(x) with respect to x. As each derivative is defined in
terms of derivatives of lower degree, we can recursively derive the value of
any derivative of C(x) at x = 0.
Given the values for each of the derivatives of C(x) by this process at x = 0,
we can now immediately write down the Maclaurin series for C(x):

C(x) ≈ c0 +
k

D
cn0
x2

2!
+
kV

D2
cn0
x3

3!
+

(
k2

D2
nc2n−10 +

kV 2

D3
cn0

)
x4

4!
+O(x5) (26)

This result exactly coincides with the Maclaurin series we derived us-
ing Adomian’s decomposition method. Generally the expression for the mth

coefficient of this series is given by:

C(x)|x=0 = c0

dC

dx

∣∣∣∣
x=0

= 0 (27)(
dmC

dxm

)∣∣∣∣
x=0

=

(
dm−2

dxm−2

[
k

D
Cn +

V

D
· dC
dx

])∣∣∣∣
x=0

; for m ≥ 2

At this point it is worthwhile considering a number of properties of C(x).
Equation (1) satisfies a maximum principle implying that the maximum value
of the solution C(x) necessarily lies on one of the boundaries. As C ′(0) = 0
we are guaranteed a stationary point at x = 0. As C

′′
(0) > 0, the minimum

of the solution is c0 and the maximum is C(1) = 1. This gives the result that
0 < c0 < 1.
Also, application of the ratio test on equation (27) demonstrates that the
Maclaurin series for C(x) is always convergent.
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5 Summary and Conclusions

We determined the Maclaurin series of C(x) to be:

C(x) ≈ c0 +
k

D
cn0
x2

2!
+
kV

D2
cn0
x3

3!
+

(
k2

D2
nc2n−10 +

kV 2

D3
cn0

)
x4

4!
+O(x5) (28)

When taken to more than four terms, this approximation was visually
indistinguishable from our numerical approximation. When the right pa-
rameters are substituted into equation (28) it collapses down and coincides
with other reported solutions [1] [2] [4].

The method of derivation which we used to arrive at this result can be
further generalised to derive the Maclaurins series for any ODE of the form:

d2c

dx2
= q1

dc

dx
+ q2R(x) (29)

Where q1 and q2 are constants, and R(x) represents any function whose
derivatives are bounded. This method is far more general that that used
in previous studies [1] [2] [3] and can be expanded to include other reac-
tion terms such as the Michaelis-Menten biochemical reaction model. It also
has the advantage of being simple, and does not rely upon any specialised
technique such as the Adomian decomposition technique [1] or the HAM
technique [2], and is far more general as it incorporates the effects of advec-
tion. By adding on a sufficient number of terms to the series any desired
level of accuracy can be attained.

We have also demonstrated that C(x) converges and that there exists a
real value of c0 between 0 and 1.
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A Analytical solution to Linear Equation

The exact equilibrium solution to the linear form of equation (1):

D
∂2C

∂x2
− V ∂C

∂x
− kC = 0 (30)

Is:
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C(x)=
(−V +

√
V 2+4kD)·Cs·e

1
2

(V +
√

V 2+4kD)x
D +(V +

√
V 2+4kD)·Cs·e

− 1
2

(−V +
√

V 2+4kD)x
D

−V ·e
1
2

(V +
√

V 2+4kD)L
D +

√
V 2+4kD·e

1
2

(V +
√

V 2+4kD)L
D +V ·e−

1
2

(−V +
√

V 2+4kD)L
D +

√
V 2+4kD·e−

1
2

(−V +
√

V 2+4kD)L
D
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