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1 Introduction

1.1 Background

Ad-hoc mobile networks are self-configuring networks of mobile handsets,
connected via wireless links. All mobile handsets, or nodes, are free to
move within the network and frequently change their links to one another.
For such a network to function properly, it is essential that nodes are
willing to act as transit nodes. That is, they forward traffic unrelated to
their own personal benefit through the network.

One of the primary challenges related to such networks is
determining how to manage information in order to ensure that traffic is
efficiently routed through the network. There is also the issue of how to
provide incentives to individuals to ensure they behave in a socially
desirable manner by routing traffic through the network.

Some of the key advantages of ad hoc mobile networks are that they
enable decentralised communication, they do not require heavy investment
in telecommunications infrastructure and they are highly flexible. These
networks could be desirable for developing countries unable to afford
conventional telecommunications infrastructure. They could also be used
when the telecommunications infrastructure of a region has sustained
damage.

1.2 Model

An ad hoc mobile phone network can essentially be modelled as a graph in
which vertices represent individual nodes and edges represent potential
routes within the network. The network which was primarily considered is
illustrated on the following page.

The model design and notation used is outlined below.

• Let J be the set of all nodes

– Each node j ∈ J is a fixed point in the Cartesian plane

– Each node j ∈ J is connected to every other node within a
specified range (56m was used in simulations)

• Let R be the set of all routes

– Each route r ∈ R is an ordered subset of J

– Each pair of nodes i, j ∈ J with i 6= j is connected by a route
r ∈ R



Figure 1: Our 10 node test network.

– Each route r ∈ R is chosen so as to minimise Euclidean distance

Figure 1 shows the ten node test network used in Matlab simulations. This
is the same network used by Crowcraft, Gibbens, Kelly and Östring in
their 2004 paper.

• Model network traffic or data as flows along the routes within the
network

– The source node uses power initiating the flow

– Transit nodes use power both receiving the flow and then
retransmitting it

– The destination node uses power receiving the flow

• A utility function is required to quantify the level of satisfaction each
node achieves by participating in the network

– Utility is earned only by the source node for each flow

– Utility associated with a given route is a function of the flow
along that route

– Utility functions are strictly monotonically increasing and
convex

• Flows within the network are constrained by available power



– Each node j ∈ J has a power capacity Pj

– Power spent transmitting a flow is vyr where

∗ vs, vt and vd denote power per unit flow for being a source,
transit and destination node respectively

∗ yr is the flow along route r

1.3 Notation

Some further notation that is required is outlined below.

• For a route r ∈ R:

– s(r) is the source node

– t(r) is the set of transit nodes

– d(r) is the destination node

• Denote the set of routes for which j ∈ J is the source, a transit or
the destination node by Rs(j), Rt(j) and Rd(j) respectively

• For a route r ∈ R, the utility received by node s(r) is given by the
utility function Ur(yr)

1.4 Numerical Data

The following values were selected for use in the model when completing
Matlab simulations.

• Power costs

– vs = 1

– vt = 2

– vd = 1

• Power capacity

– Pj = 500 ∀ j ∈ J

The utility function Ur(yr) = log(yr) was also used in simulations.

2 Static Approach

Assume initially that all users within the network are altruistic. That is,
each user seeks to maximise total utility within the network. Krzesinski,
Latouche and Taylor (2011) utilised the model described and proposed the
following static system:



max
yr

∑
r∈R
Ur(yr) (1)

subject to:

yr ≥ 0 ∀ r ∈ R (2)

ρj ≤ Pj ∀ j ∈ J (3)

where ρj =
∑

r∈Rs(j) νsyr +
∑

r∈Rt(j) νtyr +
∑

r∈Rd(j) νdyr.

This is a non-linear maximisation of a strictly concave function over a
convex region. Thus, a unique solution exists. The problem can be solved
utilising the Lagrange method and relevant Karush-Kuhn-Tucker (KKT)
condition.

The Lagrange method is a non-linear optimisation technique. Let εj
denote the Lagrange multiplier for the power constraint at j ∈ J and ηr
denote the Lagrange multiplier for the non-negativity condition on yr.

The relevant KKTa conditions are:

ρj ≤ Pj
yr ≥ 0.

The KKTb conditions are:

∃ εj ≥ 0 such that εj(Pj − ρj) = 0
∃ ηr ≥ 0 such that ηryr = 0.

2.1 Static Solution

Provided yr ≤ P the static system has the following solution:

yr(ε) = Θr(νsεs(r) + νsεd(r) +
∑
j∈t(r)

νtεj) (4)

where Θr(ε) is the inverse of the derivative of Ur(yr).

2.2 Static Solution - Problems

The main issue with solving the network in such a manner is that the
solution is non-distributive. It utilises global information regarding the
structure of the network and this information will not be available to all
users in real applications.



The solution is relatively easy to compute for the simple test network
(see Figure 1 ). However, as additional nodes are added, the computational
intensity of the problem rapidly increases.

Finally, the static solution is not dynamic. If any changes occur
within the network (for example, if a small adjustment is made to the
network topology), then the static solution will become invalid. A dynamic
solution that could adapt to such changes is more desirable.

3 Dynamic Approach

An alternative approach is to consider the network as a dynamical system
in which each node emits a ‘price signal’. Other nodes use this information
to update there data flows so that the system converges towards the
optimal solution.

A desirable property of a dynamic solution is that each node uses
only locally available information (price signals and knowledge of local
network topology) to update their flows. Other important properties are
that the dynamical system is stable and has desirable convergence
properties.

3.1 Dynamic Solution

The proposed dynamical solution is a regime in which each node updates
their price on the basis of local demand

∂εj(t)

∂t
= κεj(t)

ρj(t)− P
P

. (5)

Here, ρj(t) is the power being consumed at node j at time t. Note that
εj(t) denotes the ‘price signal’ emitted by node j at time t. Using the same
function

yr(t) = Θr(νsεs(r)(t) + νdεd(r)(t) +
∑
j∈t(r)

νtεn(t))

for flows as in the static solution, we see that as the utility function is
concave, Θr is strictly decreasing. Therefore, a higher price at a given node
implies less flows will be sent to that node. Similarly, a lower price at given
node implies more flow will be sent to that node.

3.2 Dynamic Solution - Optimality

To see that the proposed dynamic system converges to the optimal
solution, start by observing the following:



• If ρj(t)− Pj < 0 then ρj(t) < Pj and this implies that
∂εj(t)
∂t < 0.

Thus, prices decrease.

• If ρj(t)− Pj > 0 then ρj(t) > Pj and this implies that
∂εj(t)
∂t > 0.

Thus, prices increase.

Intuitively, if a node is under-utilised then its price will fall until its
full power capacity is utilised. Similarly, if a node is being over-utilised,
then its price will rise until the power capacity restriction is met at the
node.

Thus, assuming that limt→∞(y, ε) = (y∗, ε∗), it is clear that (y∗, ε∗)
are optimal flows and prices respectively.

3.3 Dynamic System - KKT Conditions

It is also clear that (y∗, ε∗) satisfy the KKT conditions. To see this, recall

∂εj(t)

∂t
= κεj(t)

ρj(t)− P
P

and note that for stable prices (
∂εj(t)

∂t
= 0), it is required that εj(t) = 0

and/or ρj(t) = P . Thus, the necessary KKT conditions are satisfied and
the socially optimal solution is a fixed point of the proposed dynamical
system. Further, the proposed dynamical solution is a system with a single
fixed point (by construction).

3.4 Dynamical System - Matlab Simulations

In order to confirm that the proposed dynamical system behaved as
predicted, Matlab simulations were conducted. Simulations were completed
using the simple test network (see Figure 1 ). The numerical solution
computed using the dynamic system was then compared to results
computed using the static solution by Krzesinski, Latouche and Taylor
(2011).

In order to achieve this, the simple test network (see Figure 1 ) was
coded into Matlab and a simple algorithm which computed all the routes
in the network was written. All data flows were initially set to zero and an
initial price of 0.1 was set at each node. The differential equation for
updating prices within the network was discretised and the simulation was
run until the network converged.

It was found that the numerical results for the dynamical solution
matched those obtained by Krzesinski, Latouche and Taylor (2011) for the



Figure 2: Plot of prices at each node over time.

static solution. From Figures 2,3 and 4, it can be seen that the dynamic
solution also displayed desirable convergence properties. In each of the
figures, the relevant timescale is simulation iterations.

3.5 Dynamic Solution - Network Topology Experimentation

After successfully completing the initial simulations, further
experimentation with the dynamical solution was conducted. An
important property of the dynamical solution is that the system has the
ability to adapt to changes to the network topology. Thus, simulations
were run in which new users were introduced to the network part-way
through the simulation. In all cases, it was found that the system
successfully adapted and converged to the new optimal solution. Figure 5
illustrates a simulation in which a new single new user is introduced to the
test network after 1000 iterations. It can be seen that the system quickly
adapts and converges to the new optimal solution.

Other experiments included removing users part-way through simulations
and stochastically varying the range of each node (instead of fixing this at
56m). Simulations in which the nodes moved (instead of remaining in a
fixed location) were also completed. Here, each node’s motion was modeled
as a random walk.



Figure 3: Plot of utility at each node over time.

Figure 4: Plot of power usage ρn(t) at each node over time.



Figure 5: Plot of prices at each node over time.

3.6 Dynamic Solution - Utility Function Experimentation

In other simulations, the utility functions of the nodes were adjusted.
Actual mobile phone networks were modeled more realistically by allowing
each node to send flows to at most one other node at a time. Theses flows
were controlled by a continuous-time Markov chain. Figure 6 illustrates
the performance of the dynamic solution under these conditions.
Other utility function experiments included using utility functions that
varied sinusoidally in time. Once again, the dynamic solution exhibited
desirable convergence behaviour, as seen in Figure 7.

3.7 Dynamic Solution - Price Delay

Another aspect that should be considered when dealing with real networks
is that there may be some time delay associated with information shared
within the network. The success of the dynamic solution depends on each
node being able to communicate its price signal to other nodes. Thus, a
series of simulations were run to test the system’s sensitivity to delays in
the price signals. This was done by updating the flows in the network
using the prices from τ previous iterations so that

yr(t) = Θr(νsεs(r)(t− τ) + νdεd(r)(t− τ) +
∑
n∈t(r)

νtεn(t− τ)). (6)



Figure 6: Plot of prices at each node over time.

Figure 7: Plot of prices at each node over time.



Figure 8: Plot of prices at each node over time, τ = 5.

It can be seen from Figure 8 to Figure 14 that the dynamic solution
successfully adapts provided a price delay of less than 15 iterations.
However, if the delay is increased beyond this, then the system does not
successfully adapt.

4 Egotistic User

The previous analysis was carried out assuming that users within the
network seek to maximise total utility within the network. However, in
reality it would be expected that users will seek to maximise their own
utility. Thus, it would be expected that they would be unwilling to act as
a transit or destination node as this requires using power for activities that
do not increase their personal utility. It is therefore important to
determine how egotistic users behave within the network and methods of
constraining such individuals to ensure they behave in a socially optimal
manner. When investigating the behaviour of egotistic users, it was
assumed that all other users behave in a socially optimal manner. This
may because they are altruistic users or constrained egotists.



Figure 9: Plot of prices at each node over time, τ = 9.

Figure 10: Plot of prices at each node over time, τ = 12.



Figure 11: Plot of prices at each node over time, τ = 13.

Figure 12: Plot of prices at each node over time, τ = 14.



Figure 13: Plot of prices at each node over time, τ = 15.

Figure 14: Plot of prices at each node over time, τ = 17.



Figure 15: Utility achieved when each node acts as an egotist, compared to
its utility in the socially optimal case.

4.1 Egotist with Global Information

It was initially assumed that if a node acts as an egotist then it cuts flows
when it is a transit or destination node. The optimal flows for the egotist
were then solved assuming that the egotist possesses all network
information. It was assumed that other nodes are unaware of the actions
of the egotist and do not adjust their own flows. Simulations in which each
node in the test network becomes a egotistic user were completed.

The results of these simulations are summarised in Figure 15. This
table compares the utility achieved by each node when it acts as an egotist
to its utility in the socially optimal case. The problem with this egotist is
that global information is used to compute the egotist’s optimal flows. The
next step is to determine if an egotistic user could achieve these utilities
using only locally available information.

Note that it is not possible for the edge nodes (nodes 2,3,5 and 8) to
improve upon their socially optimal utility in this network. These nodes
are not utilised to full capacity in the socially optimal solution. Thus, they
have no scope for gaining additional useful network space by dropping
flows. This is because edge nodes are never transit nodes and are always
destination nodes when receiving data. Dropping destination flows only
creates additional capacity at the egotist. Since the edge nodes are all
under-utilised in the socially optimal solution, this additional capacity is
not useful as these nodes have nowhere to send extra data.



Figure 16: Utility achieved when the egotist implements the two strategies
described.

4.2 Symmetry Egotist

The ‘symmetry egotist’ was the first strategy considered in which an
egotistic user utilises locally available information only. This egotist simply
cuts all flows in which it acts as a transit node. It then replaces this data
with its own flows. The advantage of this strategy is that the prices and
flows in the network are unchanged, so other users will not notice the
presence of the egotist and adjust their flows.

Simulations in which each node in the test network implements this
strategy were completed in Matlab. By referring to the ‘Symmetry’ column
of the table in Figure 16, it can be seen that implementing this strategy
resulted in an improvement upon the socially optimal utility. However, it
fell short of the goal egotist utilities computed using global information.
Egotist nodes could improve their utility by cutting their destination flows
and then sending additional flows to nodes with excess capacity. The
‘Symmetry & Adjacent’ column of Figure 18 shows the utility obtained if
the egotist implements the ‘symmetry’ strategy and cuts destination flows
and sends additional data to immediately adjacent nodes with excess
capacity. It can be seen that this results in utility figures very close to the
goal utility figures.

Note that the symmetry strategy is equivalent to the egotist solving
their global optimisation problem, assuming all nodes within the network
are utilised to full capacity. This suggests that if the egotist could
determine available capacity at nodes with a price of ‘zero’ then the egotist
would possess sufficient information to solve the global optimisation



problem and reach the goal utility. There are two questions that must be
addressed. Firstly, how does the egotist obtain this information? Secondly,
will the other nodes in the network notice the egotist and deviate from
their socially optimal flows?

4.3 Egotist Tests

It is proposed that the egotist runs tests on the network to determine the
available capacity at under-utilised nodes (those with a price of zero).
Each of these tests have been carefully designed in an attempt to ensure
that other nodes do not become aware of the egotist. It is important to
note that the egotist does not actually require knowledge of the socially
optimal capacities. Rather, the egotist must determine the available
capacity which they could conceivably use. In some cases the egotist may
not have sufficient capacity to completely determine the spare capacity of
another node. However, this does not matter, because it follows that the
egotist would not be able to make use of this additional, unknown capacity
anyway.

The following tests, which can be implemented by the egotist, are
proposed. These test will enable the egotist to determine the capacity
available at this nodes that could conceivably be utilised.

• Under-utilised, adjacent nodes: The egotist cuts flows in which they
are a destination node and utilises this additional capacity to
increase their flows to the relevant node. The egotist continues to
increase this flow until that nodes achieves a non-zero price (an
increase in price). This indicates to the egotist node the excess
capacity available at this node. The egotist could also use flows in
which they are a transit if additional capacity is required for the test.

• Under-utilised, non-adjacent nodes: The egtoist identifies the transit
nodes along the route to the relevant node. They cut the flows to the
transit nodes. They then send additional flows to the node of
interest. For example, if the route contains a single transit node, the
egotist cuts the flow to this node. They then send additional flow to
the node of interest. The size of this additional flow must be half the
size of the flow cut from the transit node. (Note that this assumes
that νt is twice νs.)

Simulations in which the egotist implements the described tests were
completed in Matlab. This output is shown in the ‘Egotist with Realistic
Tests’ columns of Figure 17. It can be seen that the goal utilities computed
using global information have now been achieved in a realistic manner.



Figure 17: Utility achieved when the described tests are implemented.

4.4 Detection by Other Nodes

The other issue that must be addressed is whether other nodes within the
network will be able to detect the egotist. This was done by simulating in
Matlab what the other nodes in the network would observe if a fixed node
were to become an egotist. It could then be seen if the other nodes adjust
their prices and flows in response.

This was completed by doing the following:

• Running the socially optimal simulation for 1000 iterations.

• Instantaneously setting the flows along routes with the fixed node as
the egotist to this node’s optimal egotist flows.

• Compensate for the egotist behaviour by adding extra capacity into
the network where the egotist drops flows. To elaborate, the egotist
creates additional space within the network by dropping flows in
which they are a transit node. The other nodes within the network
are unaware of this behaviour, as the egotist compensates by
replacing the dropped flows with their own data.

• The egotist artificially maintains their socially optimal price to
prevent other nodes being alerted by its behaviour and adjusting
their flows accordingly.

The simulations shows that the other nodes do not detect any
change within the network and thus do not adjust their flows or prices.
However, it is possible the other nodes may become suspicious when they
stop receiving transmissions from certain nodes, which cannot be socially
optimal with logarithmic utility functions.



Figure 18: Plot of prices at each node over time.

Figure 18 and Figure 19 shows the simulation output when node 9 is
an egotist. It can be seen from Figure 18 that the prices within the
network are unchanged, which indicates that the egotist remains
undetected. Figure 19 does not show the actual utility received by the
non-egotist nodes; it shows the utility the nodes think they are receiving.

4.5 Egotist with Price Manipulation

It is conceivable the egotist could manipulate their price signals in the
network. If this is possible, then it would be optimal for the egotist to
communicate a price of zero to the rest of the network. Thus, the egotist
will attract a larger volume of traffic, which they can then cut in order to
create additional space in the network for their own flows.

Simulations in which the egotist implements this strategy were
completed in Matlab. The output is shown in Figure 20.

5 Further Research

Now that egotistic behaviour has been fully investigated, the next step
would be to determine how to constrain users to ensure they behave in a
socially optimal manner.



Figure 19: Plot of utility at each node over time.

Figure 20: Utility achieved when the egotist fixed a price of zero.



One possible solution is to implement some sort of credit-based
system, in which users earn credits by acting as a transit node. In order to
send their own data, the nodes would require sufficient credits. Nodes at
the edge of the network never have the opportunity to act as a transit
node, so they would require an allowance of credits.
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