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1 Introduction

1.1 Background

Ad-hoc mobile networks are self-configuring networks of mobile handsets,
connected via wireless links. All mobile handsets, or nodes, are free to
move within the network and frequently change their links to one another.
For such a network to function properly, it is essential that nodes are
willing to act as transit nodes. That is, they forward traffic unrelated to
their own personal benefit through the network. The aim of this research
project was to build a simple model for these networks and solve for
optimal data flows.

1.2 Model

Such a network can be modelled as a graph where vertices represent nodes
and edges represent network routes. Figure 1 shows the ten node test
network used in Matlab simulations. This is the same network used by
Crowcraft, Gibbens, Kelly and Östring in their 2004 paper. For a full
explanation of the model and notation used throughout, please refer to the
AMSI website for the full version of this report.



Figure 1: Our 10 node test network.

2 Static Approach

Assume that all users within the network are altruistic. That is, each user
seeks to maximise total utility within the network. Krzesinski, Latouche
and Taylor (2011) proposed the following static system:

max
yr

�

r∈R
Ur(yr) (1)

subject to:

yr ≥ 0 ∀ r ∈ R (2)

ρj ≤ Pj ∀ j ∈ J (3)

where ρj =
�

r∈Rs(j) νsyr +
�

r∈Rt(j) νtyr +
�

r∈Rd(j) νdyr.

Note that a full explanation of all notation used can be found in the full
version of this report available on the AMSI website.

This is a non-linear maximisation of a strictly concave function over
a convex region. Thus, a unique solution exists. The problem can be
solved utilising the Lagrange method and relevant Karush-Kuhn-Tucker
(KKT) condition.



The relevant KKTa conditions are:

ρj ≤ Pj

yr ≥ 0.

The KKTb conditions are:

∃ �j ≥ 0 such that �j(Pj − ρj) = 0
∃ ηr ≥ 0 such that ηryr = 0.

2.1 Static Solution

Provided yr ≤ P the static system has the following solution:

yr(�) = Θr(νs�s(r) + νs�d(r) +
�

j∈t(r)

νt�j) (4)

where Θr(�) is the inverse of the derivative of Ur(yr).

3 Dynamic Approach

An alternative approach is to consider the network as a dynamical system
in which each node emits a ‘price signal’. Other nodes use this information
to update there data flows so that the system converges towards the
optimal solution. A desirable property of a dynamic solution is that each
node uses only locally available information (price signals and knowledge
of local network topology) to update their flows. Other important
properties are that the dynamical system is stable and has desirable
convergence properties.

3.1 Dynamic Solution

The proposed dynamical solution is a regime in which each node updates
their price on the basis of local demand

∂�j(t)

∂t
= κ�j(t)

ρj(t)− P

P
. (5)

Here, ρj(t) is the power being consumed at node j at time t. Note that
�j(t) denotes the ‘price signal’ emitted by node j at time t. Using the same
function

yr(t) = Θr(νs�s(r)(t) + νd�d(r)(t) +
�

j∈t(r)

νt�n(t))

for flows as in the static solution, we see that as the utility function is
concave, Θr is strictly decreasing. Therefore, a higher price at a given node
implies less flows will be sent to that node. Similarly, a lower price at given
node implies more flow will be sent to that node.



3.2 Dynamic Solution - Optimality

To see that the proposed dynamic system converges to the optimal
solution, start by observing the following:

• If ρj(t)− Pj < 0 then ρj(t) < Pj and this implies that ∂�j(t)
∂t < 0.

Thus, prices decrease.

• If ρj(t)− Pj > 0 then ρj(t) > Pj and this implies that ∂�j(t)
∂t > 0.

Thus, prices increase.

Intuitively, if a node is under-utilised then its price will fall until its
full power capacity is utilised. Similarly, if a node is being over-utilised,
then its price will rise until the power capacity restriction is met at the
node.

Thus, assuming that limt→∞(y, �) = (y∗, �∗), it is clear that (y∗, �∗)
are optimal flows and prices respectively.

3.3 Dynamic System - KKT Conditions

It is also clear that (y∗, �∗) satisfy the KKT conditions. To see this, recall

∂�j(t)

∂t
= κ�j(t)

ρj(t)− P

P

and note that for stable prices (
∂�j(t)

∂t
= 0), it is required that �j(t) = 0

and/or ρj(t) = P . Thus, the necessary KKT conditions are satisfied and
the socially optimal solution is a fixed point of the proposed dynamical
system. Further, the proposed dynamical solution is a system with a single
fixed point (by construction).

3.4 Dynamical System - Matlab Simulations

In order to confirm that the proposed dynamical system behaved as
predicted, Matlab simulations were conducted. These used the simple test
network (see Figure 1 ), a discretised version of the differential equation
and simulations ran until the system converged. The numerical solution
computed using the dynamic system was then compared to results
computed using the static solution by Krzesinski, Latouche and Taylor
(2011). It was found that the numerical results for the dynamical solution
matched those obtained by Krzesinski, Latouche and Taylor (2011) for the
static solution. From Figures 2 it can be seen that the dynamic solution
displayed desirable convergence properties.



Figure 2: Plot of prices at each node over time (simulation iterations).
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