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 Finite geometry is the study of incidence structures, a system of points 
and lines with some points on some lines according to an incidence relation, 
such that the number of points and lines is finite. Generalised quadrangles 
arose from an effort by Tits [5] to give geometric constructions of the finite 
simple groups of Lie type. Tits' key observation was that the incidence graph of 
an n-gon always has diameter n and girth 2n. So when considering generalised 
quadrangles, we were concerned with finite incident structures with incidence 
graph of diameter 4 and girth 8. 
 In particular, we focused on partial quadrangles, defined by Cameron [2].  
Triangle-free strongly regular graphs, of which only seven are known [3], were 
our source of partial quadrangles, as they satisfy all the axioms of a partial 
quadrangle. A generalised quadrangle is also a partial quadrangle. 
 The focus of this research was intriguing sets, found as tight sets and 
ovoids in finite geometry, upper and lower bounds of average degrees in graph 
theory and correspond to perfect error correcting codes of radius 1 in coding 
theory. We take a graph with adjacency matrix A and a map f that sends 
vertices to real numbers. We are looking for real constants α and β such that 
 

 Af = α + βχ 
 

with χ representing the "all ones" map. If these constants exist then f is an 
intriguing map. We were concerned with maps of 1's and 0's, as this forms a 
subset relation with the resulting subset an intriguing set.  
 Many of the smaller triangle-free strongly regular graphs, such as the 
Petersen graph and Clebsch graph have been completely catalogued in terms 
of intriguing sets [1]. There were gaps in the the largest graphs, such as M22 
and the Higman-Sims, and these would later form the focus of our research. 
 



	
  

	
  

 
 
 
 
 
 
 
 I started my investigation with Latin square graphs. Latin squares are a 
square array of numbers 1..n such that no row or column contains duplicate 
entries. Sudoku puzzles are perhaps the best examples of such Latin squares. 
A graph is constructed from such a square by considering every entry as a 
vertex with two entries adjacent if they are in the same row, column or are the 
same value. This forms a strongly regular graph of parameters (n2, 3(n-1), n, 6). 
A transversal of a Latin square is a collection of entries 1..n such that no two 
entries are in the same row or column or symbol, and is an analogue of an 
ovoid in finite geometry. We proved that a transversal is an intriguing set. 
Finally, we examined a magical map, analogue of a tight set, in which every 
vertex is assigned a value equal to the sum of its row and column indices, 
minus its value. Whilst not being a map of 1's and 0's, this is intriguing, with α = 
n-3 and β = (n2 + n). 
 Returning to triangle-free strongly regular graphs, we were able to prove 
some lemmas that made our investigations easier. By decomposing the 
adjacency matrix into orthogonal idempotents, we were able to reduce the 
equation to n variables and n constraints for a graph of order n, although in 
practice the rank of these constraints is lower. Furthermore, we were able to 
narrow down the possible sizes of intriguing sets by proving a lemma on 
intersections of intriguing sets. We also noted that the complement of an 
intriguing set is intriguing, so we only needed to consider sets of size less than 
or equal to n/2. Using Gurobi [4] for linear optimisation we were able to find all 
intriguing sets of the Petersen, Clebsch, Gewirtz and Hoffman-Singleton again. 
 For larger graphs, though, this was insufficient. The Higman-Sims, for 
example, is on 100 vertices, and this yielded far too many intriguing sets to 
calculate in a reasonable time frame. We were able to use group theory to 
break the problem down into smaller chunks. An automorphism of a graph is an 
isomorphism from the graph to itself. The orbit of an intriguing set under the 
group of automorphisms can all be considered equivalent; we only need to find 
one, in order to find the others. 
 All of the graphs we considered were vertex-transitive, meaning that for 
any two vertices there existed an automorphism mapping one to the other. 
Hence, we assumed that an arbitrary vertex would be in a solution, reducing the 
total number of solutions we needed to find. Furthermore, since intriguing sets 
under automorphism are considered equivalent, we were able to reduce the 
number of solutions even further by examining the orbits of the stabiliser of that 
arbitrary vertex. All of our graphs were of permutation rank 3 so, excluding the 
trivial orbit containing the vertex we stabilised, there were only 2 orbits. We 
could then split the problem into two cases; one involving an arbitrary fixed 
element from the first vertex and another involving an arbitrary fixed element 
from the second. The cases could then be solved and combined. This process,  



	
  

	
  

 
 
 
 
 
 
 
which we called symmetry breaking, could be continued depending upon how 
many vertices we wanted to assume were in a solution. 
 This symmetry breaking simplified the computation, allowing us to gather 
some results. We found that all intriguing sets of size 50 in the Higman-Sims 
were isomorphic to the Hoffman-Singleton graph, and that all sets of size 10 
were isomorphic to either a circulant with joining set {2,3,7,8}, or K5,5 minus a 
matching. M22, however, was different, in that we found an intriguing set of size 
33 with a trivial stabiliser, leading to 887040 isomorphic sets. We then reduced 
these sets and their complements to unions of intriguing sets of size 11. This 
partitions the vertices into intriguing sets, and would suggest that there are 27-2 
nontrivial intriguing sets for each such partition. Furthermore, the stabiliser of 
this partition is also trivial, so there are plenty of ways to partition the vertices. 
This suggests that there are far too many to be interested in singular examples. 
 Further work would revolve around intriguing partitions; intriguing sets 
that can be reduced to the union of at least 3 non-trivial intriguing sets. The 
results of M22 clearly position this as an area of interest. 
 The AMSI Vacation Research Scholarship has been immensely valuable 
to me, allowing me to experience research in mathematics and to learn about 
recent advances in finite geometry. Importantly, I was able to meet and network 
with similarly minded mathematics students from around the nation. Thanks are 
due for my supervisor Dr. John Bamberg, AMSI, CSIRO and the University of 
Western Australia. 
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