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Abstract

Given a 2D strip of fixed height and a set of rectangles with predetermined widths,
heights, and x-positions, a valid packing of the rectangles corresponds to an assignment of
a y-position to each rectangle such that all rectangles are on the strip and none overlap.
This project investigated conditions determining the existence of such a packing, and
methods of finding one. The goal was to prove a conjecture that suggested that a valid
packing of rectangles exists as long as a condition on the heights of overlapping rectangles
is met. A counterexample to the conjecture was eventually found, after which, methods
of conflict minimisation for infeasible problem instances were considered.

1 Introduction

1.1 Stockyard-scheduling

The problem explored in this project is inspired by a problem related to stockyard scheduling.
Coal, once delivered to a coal port by train, must be stockpiled on a coal pad for a period of
time before being loaded onto ships. The coal pad is a narrow strip of finite length, and thus
may only hold a limited amount of coal at any given instant. Each stockpile is allocated some
length of space on the pad before it is stored there, taking up the full width and allocated
length of the pad until it is loaded onto a ship and the pad space is free again. For our
problem, we assume that we know in advance the full schedule of shipments that must occur
up until some time horizon. Our task is then to determine where to position each stockpile
on the pad such that all stockpiles will fit, and all shipments can be made.

More formally, consider a 2D strip (in a time-space coordinate system) of given height
H, where H is the pad length, and of width W equal to the time horizon. A stockpile of size
h, which is to be placed on the pad at time x, y units from one end, and is to remain there
for w units of time corresponds to a rectangle (x, y, w, h) in time-space coordinates. Thus,
our problem can be stated as: Assign a y position to each of n rectangles of predetermined
width, height, and x-postion, such that no two rectangles overlap, and all rectangles are
contained within the larger rectangle (0, 0,W,H).

1.2 Strip-packing

The problem of placing a given set of axis-aligned rectangles onto a strip, such that the
rectangles don’t overlap is an example of an oriented strip-packing problem. That is, given
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a list R of n oriented rectangles (i.e. rectangles whose edges are parallel to the coordinate
axes, and that can’t be rotated) each with a given width wi and height hi, assign each
rectangle a position (xi, yi) (where xi, yi ≥ 0), such that yi + hi ≤ H for all rectangles i

(where H is a given ‘strip height’), such that the rectangles do not overlap, and such that
max(x1, x2, ..., xn−1, xn) is minimised.

Our problem is similar, except that each xi is predetermined, and is given along with the
widths and heights as part of the problem’s input (meaning that we only require a feasible
solution, rather than a solution with that minimises the maximum xi).

1.3 Height-Sum Conjecture

Clearly, for the problem to have a solution, the sum of heights of all blocks that overlap
any given x-position must be ≤ H. The conjecture this project set out to prove was that
if a problem instance satisfies this condition, then that problem instance has a solution.
I.e. a feasible arrangement of blocks exists if and only if the sum of block heights at every
x-position is ≤ H.

2 Methods

2.1 Integer Program

Since the x-positions and widths of blocks are fixed, if the x-spans of two given blocks do
not overlap, then there exists no assignment of y-positions such that the two blocks intersect
each other. We consider blocks arranged as such to be independent.

Blocks whose x-spans do overlap could intersect each other depending on the choice of
y-coordinates. We consider these blocks to be dependent.

The following is a formulation of the problem as an integer program. This program was
used to solve problem instances for the purpose of visualisation.

The resulting integer program is as follows:

H = the strip height

for all blocks i : (strip constraints)

0 ≤ yi ≤ H − hi

for all dependent blocks i, j : (intersection constraints)

yi + hi ≤ yj + bijH

yj + hj ≤ yi + (1− bij)H

2.2 Random Instance Generator

A C++ program was written that could generate a random problem instance, solve it using
Gurobi Optimiser (Gurobi Optimization, 2012), and generate diagrams of the unsolved and
solved arrangements of blocks as Postscript. The data generator was written to aid in the
visualisation of problem instances.

The data generator creates an integer program of the form described in §2.1 from a
generated problem instance, and Gurobi Optimiser is called to solve it. If the problem
instance is found to be feasible, the y-positions from the solution are used to generate a
diagram of the feasible arrangement.
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2.3 Simplification

In an effort to prove the height-sum conjecture, a number of ways of modifying problem
instances were identified. Each modification would change the problem instance in such
a way that if the unmodified problem instance was feasible, then its modified form would
also be feasible, and that a solution to the modified instance can easily be converted into a
solution to the original problem instance.

An example of one such problem simplification is the use of the maximal cliques of the
interval graph corresponding to a given problem instance to re-scale the x-axis of a problem
instance to a minimal, integer form.

2.4 Reduced problem instance

By repeatedly applying the simplifications in §2.3 in the correct order until no more can be
applied, a problem instance can be converted into what we call a reduced form.

Any solution to a problem instance’s reduced form can be converted into a solution to the
original problem instance. Also, if the original problem instance is feasible, and the height-
sum conjecture is true, then the problem instance’s reduced form must also be feasible.

2.5 Limited Cases

At first, only restricted cases of the problem were considered. These included:

1. Reduced problems in which each block spans two or fewer maximal cliques.

2. Reduced problems in which the height of each block is no greater than two.

3. Reduced problems in which each block spans three or fewer maximal cliques.

The first of these was fairly trivial, and it was proved that all problems of that form were
feasible. However, the second and third of these cases resisted proof.

2.6 Counter Example
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Figure 1: A counterexample to the
height-sum conjecture.

While working on limited cases of reduced problems,
and after modifying the data generator to generate
reduced problem instances with integer block widths
and block heights, a number of counterexamples to the
height-sum conjecture were discovered.

Figure 1 illustrates a simple counterexample. The
height sum in each maximal clique is equal to H, but
no feasible arrangement of blocks exists.

2.6.1 Implications

The existence of a counterexample to the height-sum
conjecture proves the conjecture to be false. Addition-
ally, it implies that most of the problem simplifications
in §2.3 are invalid (i.e. those based on the height-sum
conjecture).
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2.7 Conflict Minimization

The existence of a counterexample to the height-sum conjecture demonstrates that not all
problem instances being considered have a feasible solution. However, finding a way of
‘solving’ such problems in some sense could have practical benefit.

There are two main senses in which an infeasible problem instance can be solved:

• Blocks may be allowed to overlap, but the ‘amount’ of overlapping is minimised.

• Some aspect of the problem is changed in a minimal way such that the blocks can be
placed without overlapping.

A number of integer programs were written that could solve infeasible problem instances
by minimally changing them in a variety of different ways.

3 Future Work

3.1 Feasibility Condition

The height-sum condition considered here fails to indicate whether a given problem instance
is feasible, but some other simple test may work. Finding an easy (i.e. polynomial time) test
for feasibility would have practical benefit, and is a goal worth pursuing.

3.2 Exact solutions

The integer programs presented in §2.1 and §2.7 provide exact solutions to all feasible problem
instances, and additionally, the programs in §2.7 provide block arrangements that cause
‘minimal conflict’ in some sense. Other methods of finding exact solutions would be worth
exploring, in particular, methods that might have a faster running time than the integer
programs used here.
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