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1 Introduction

Variational approximation methods are an emerging class of deterministic techniques
for analytically approximating high dimensional intractable integrals. In this regard,
they provide alternatives to the predominant Markov chain Monte Carlo (MCMC)
methods in the fitting of and inference for complex statistical and probabilistic mod-
els. Whilst variational approximations sacrifice some of the accuracy of MCMC, they
are significantly faster to compute, particularly when applied to large datasets or com-
plex models (Ormerod and Wand 2012).

Variational approximations have become a key component of inference in Computer
Science, having applications in such diverse areas as speech recognition, document
retrieval and genetic linkage analysis (Jordan 2004). Despite this, variational approx-
imations have yet to attain widespread attention in statistical settings.

This project develops theory for the particular technique of Gaussian variational ap-
proximation in the inference of Bayesian generalised linear models, proving that es-
timators in this context possess useful frequentist properties such as consistency and
can be used to calculate asymptotically valid standard errors.



2 Bayesian Generalised Linear Model

The observed data are (yi,xi), 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, define the p× 1 vectors
xi = (xi1, . . . , xip)

T and 1n as a vector of length n consisting of ones. The entries of
the explanatory vectors xi are unrestricted real numbers, while the response variables
yi are subject to restrictions such as being binary or non-negative integers.

We consider one-parameter exponential family models of the form

p(y|β) = exp
{
yTXβ − 1Tnb(Xβ) + 1Tnc(y)

}
where β = (β1, . . . , βp) is a vector of parameters with prior β ∼ N (0, σ2

βI).

Common examples of these exponential family models include the Poisson case, for
which b(x) = ex and c(x) = log(x!), and the logistic case, for which b(x) = log(1 + ex)
and c(x) = 0.

The marginal likelihood is given by

p(y) =
1

(2πσ2
β)p/2

∫
Rp

exp

{
yTXβ − 1Tnb(Xβ) + 1Tnc(y)− ‖β‖

2

2σ2
β

}
dβ. (1)

We note that p(y), and hence p(β|y), involves a potentially intractable integral over
Rp. We use the method of Gaussian variational approximation to approximate p(y).

3 Gaussian Variational Approximation of Bayesian

Generalised Linear Models

Gaussian variational approximation involves the derivation of a lower bound for the
intractable marginal likelihood using a Gaussian density. This is achieved by employ-
ing the notion of Kullbalck-Leibler divergence, the details of which follow.

Let q(β) be the p-variate Gaussian density function with mean µ = (µ1, . . . , µp) and



covariance matrix Σ. Then we have

log p(y) =

∫
q(β) log p(y)dβ

=

∫
q(β) log

[
p(y,β)

q(β)

]
dβ +

∫
q(β) log

[
q(β)

p(β|y)

]
dβ

≥
∫
q(β) log

[
p(y,β)

q(β)

]
dβ.

The inequality arises from the fact that∫
q(β) log

[
q(β)

p(β|y)

]
dβ ≥ 0

for all densities q, with equality if and only if q(β) = p(β|y) almost everywhere (Kull-
back and Leibler 1951).

Hence, a variational lower bound for the marginal log-likelihood is given by

log p(y) ≥ Eq
[
log

(
p(y,β)

q(β)

)]
≡ log p(y;µ,Σ)

where

log p(y;µ,Σ) = yTXµ− 1TnB(Xµ, dg(XΣXT )) + 1Tnc(y)− p
2

log(σ2
β)

− 1

2σ2
β

[
‖µ‖2 + tr(Σ)

]
+ 1

2
log |eΣ| (2)

is the Gaussian variational approximation to p(y), B(r)(µ, σ2) ≡
∫∞
−∞ b

(r)(σx+µ)φ(x)dx,
φ is the N (0, 1) density function and dg(A) is the vector consisting of the diagonal
entries of A. For the Poisson case, B(µ, σ2) = exp{µ + 1

2
σ2}. For the logistic case,

numerical integration is required.

The greatest lower bound for p(y) is obtained by maximising log p(y;µ,Σ) over the
variational parameters µ and Σ. We denote these maximum likelihood estimators by
µ̂ and Σ̂, respectively.



4 Consistency and Standard Error

4.1 Consistency

We now prove the consistency of the maximum likelihood estimators of the model
parameters based on Gaussian variational approximation. In order to do so, we impose
the following conditions:

(A1) for 1 ≤ i ≤ n, yi|xi are independent;

(A2) for 1 ≤ i ≤ n, the random variables xi ∈ Rp are independent and identically
distributed with p fixed;

(A3) the distribution of each yi belongs to a natural exponential family with E[yi] =
b(xTi β0), where β0 are the true values of β;

(A4) for each 1 ≤ i ≤ n, E[xix
T
i ] is element-wise finite and positive definite;

(A5) b(xTi ξ) is infinitely differentiable in ξ;

(A6) b(1)(xTi ξ) is continuously differentiable in ξ;

(A7) ϕ(r)(β0) = EX [xijb
(r)(xTi β0)] exists for r = 0, 1, 2;

(A8) xi, µ and Σ are element-wise bounded;

Note that

∂ log p

∂µ
= XT

(
y −B(1)(Xµ, dg(XΣXT ))

)
− µ

σ2
β

(3)

and
∂ log p

∂Σ
= Σ−1 −XTdiag(B(2)(Xµ, dg(XΣXT )))X− σ−2β I (4)

(Opper and Archambeau, 2009)

The following theoretical results are used in the course of proving the consistency of
the maximum likelihood estimators.

Lemma 1. (Horn and Johnson 1985, 7.7.5) The inverse of an Hermitian matrix[
A B
BT C

]−1
=

[
I 0

−C−1BT I

] [(
A−BC−1BT

)−1
0

0 C−1

] [
I −BC−1

0 I

]



Lemma 2. Let M be a symmetric p×p matrix and a = (a1, . . . , ap)
T . Then aT [M + diag(d)]−1 a

is a strictly decreasing funtion of di, where d = (d1, . . . , dp)
T and diag(d) is the p× p

diagonal matrix containing the entries of d along the main diagonal.

Proof.

M + diag(d) =

[
m11 + d1 m12

mT
12 M22 + D2

]

where m12 = (m12, . . . ,m1p), D2 = diag(d2, . . . , dp) and M22 =

m22 · · · m2p
...

. . .
...

mp2 · · · mpp


Then, by Lemma 1,

aT [M + diag(d)]−1 a = aT
[

1 0
−(M22 + D2)

−1mT
12 Ip−1

]
×
[(
m11 + d1 −m12(M22 + D2)

−1mT
12

)−1
0

0 (M22 + D2)
−1

]
×
[

1 −m12(M22 + D2)
−1

0 Ip−1

]
a

Let b =

[
1 −m12(M22 + D2)

−1

0 Ip−1

]
a

Then

aT [M + diag(d)]−1 a =
b21

d1 +m11 −m12(M22 + D2)−1mT
12

+ bT2 (M22 + D2)
−1b2 (5)

where b2 = (b2, . . . , bp).

Clearly, (5) is strictly decreasing in d1. The result follows for di after relabelling.

Lemma 3.
xTi Σxi = Op(n

−1)



Proof. Setting (4) to zero, we obtain

Σ =
[
σ−2β I +XTWX

]−1
where W = diag(B(2)(Xµ, dg(XΣXT ))). Using the Sherman-Morrison-Woodbury ma-
trix identity, we have

xTi Σxi = xTi
[
σ−2β I +XTWX

]−1
xi

= σ2
β‖xi‖2 − σ4

βx
T
i XT

[
σ2
βXXT + W−1]−1 Xxi

Now, by Lemma 2, xTi XT
[
σ2
βXXT + W−1]−1 Xxi is a strictly decreasing function of

w−1i . Let
γ = inf

xi,µ,Σ
B(2)(xTi µ,x

T
i Σxi).

Then γ is bounded away from zero by assumption (A8) and the fact that B(2)(·, ·) is
bounded away from zero for finite arguments. Then,

xTi Σxi ≤ σ2
β‖xi‖2 − σ4

βx
T
i XT

[
σ2
βXXT + γ−1I

]−1
Xxi

= xTi
[
γXTX + σ−2β I

]−1
xi

=
1

n
xTi

[
γ

n

n∑
i=1

xix
T
i +

σ−2β
n

I

]−1
xi.

Let

Ān =
1

n

n∑
i=1

xix
T
i .

By the strong law of large numbers, and under the assumptions (A2)-(A3), we have

Ān
a.s.−−→ A

where Ai = xix
T
i . Now, using the Taylor series expansion about 1

n
σ−2β = 0, we obtain

xTi Σxi ≤
1

n
γ−1xTi Ā−1n xi +

1

n2
γ−2σ−1β xTi Ā−2n xi +Op(n

−3)

p−→ 1

n
γ−1xTi A−1xi +Op(n

−2)

= Op(n
−1).



We note that the proof of Lemma 3 is identical for eTi Σej, where ei is the p × 1 vec-
tor with 1 in the i-th row and zero elsewhere. That is, Σij = Op(n

−1) for all 1 ≤ i, j ≤ p.

Result 1. µ̂ is a consistent estimator of β0.

Proof. The Taylor series expansion of B(r)(xTi µ,x
T
i Σxi) about xTi Σxi = 0 gives

B(r)(xTi µ,x
T
i Σxi) ≈ b(r)(xTi µ) + 1

2!
b(r+2)(xTi µ)xTi Σxi + 1

3!
b(r+4)(xTi µ)

[
xTi Σxi

]2
+ . . .

= b(r)(xTi µ) +Op(n
−1)

Hence, for each j = 1, . . . , p, (3) gives

1

n

n∑
i=1

yixij =
1

n

n∑
i=1

xijb
(1)(xTi µ)− µj

nσ2
β

+Op(n
−2)

=
1

n

n∑
i=1

xijb
(1)(xTi µ) +Op(n

−1). (6)

Now, by the strong law of large numbers and under assumptions (A1)-(A2),

1

n

n∑
i=1

yixij
a.s.−−→ E

[
1

n

n∑
i=1

yixij

]
= EX

[
xijb

(1)(xTi β0)
]
≡ ϕ(β0)

and
1

n

n∑
i=1

xijb
(1)(xTi µ)

a.s.−−→ EX
[
xijb

(1)(xTi µ)
]
≡ ϕ(µ).

Hence, we have

ϕ(β0) = ϕ(µ) + op(1).

As ϕ(ξ) is continuous in ξ, the multivariate mean value theorem applies and so there
exists a c∗ ∈ (µ,β0) such that ϕ(β0)− ϕ(µ) = ∇ϕ(c∗)T (β0 − µ). Thus

β0 = µ+ op(1).

Hence, µ̂ is a consistent estimator of β0.

Result 2. The rate of convergence for µ̂ is Op(n
−1/2).



Proof. Consider the maximum likelihood estimator β̂ of log p(y|β). Note that

∂ log p(y|β)

∂β
= XTy −XT b(Xβ) (7)

Hence for each j = 1, . . . , p, we have

n∑
i=1

yixij =
n∑
i=1

xijb
(1)(xTi β̂). (8)

Solving (6) and (8) gives

n∑
i=1

xijb
(1)(xTi β̂) =

n∑
i=1

xijb
(1)(xTi µ̂) +Op(n

−1). (9)

As b(1)(xTi ξ) is continuous in ξ, the multivariate mean value theorem applies and so

there exists a c∗ ∈ (µ̂, β̂) such that b(1)(xTi β̂)− b(1)(xTi µ̂) = ∇b(1)(c∗)T (β̂− µ̂). Hence,
we have

β̂ = µ̂+Op(n
−1). (10)

From the standard asymptotic properties of maximum likelihood estimators, we have
β̂ = β0 +Op(n

−1/2) (Bishop et al. 1975, Theorem 14.4-1). Thus, we obtain

µ̂ = β0 +Op(n
−1/2).

4.2 Standard Error

Result 3.
Σ̂

p−→ In(β0)
−1

Proof. The Fisher information matrix is given by:

In(β) = −E
[

∂2

∂β∂βT
log p(y|β)

]
= −E

[
−XTdiag(b(2)(Xβ))X

]
= XTdiag(b(2)(Xβ))X



Now, by the multivariate mean value theorem and Result 2

Σ =
[
σ−2β I +XTdiag(B(2)(Xµ, dg(XΣXT )))X

]−1
=

1

n

[
Op(n

−1) +
1

n

n∑
i=1

xix
T
i b

(2)(xTi µ)

]−1
= I−1n (β) +Op(n

−1).

Thus,
Σ̂

p−→ In(β0)
−1

5 Invariance under Linear Transformation

Let β = Au + b where A is an invertible p× p matrix and b = (b1, . . . , bp) is a p× 1
vector.

The transformation formula gives

p(y,u) ∝ exp
{
yTXAu− 1Tnb(XAu + Xb)

}
exp

{
− 1

2σ2
β

(
uTATAu + uTATb + bTAu

)}
. (11)

Then, the lower bound for the marginal likelihood is given by

Eq
[
log

(
p(y,u)

q(u)

)]
≡ log p̃(y;µ,Σ) (12)

We solve for the maximum likelihood estimators µ̃ and Σ̃ to obtain:

ATXT (y − ṽ)− 1

σ2
β

(
ATAµ̃+ ATb

)
= 0 and (13)

Σ̃ = A−1
[
XTW̃X + σ−2β I

]−1
A−T (14)

where

ṽ = B(1)(XAµ̃+ Xb, dg(XAΣ̃ATXT )) and

W̃ = diag(B(2)(XAµ̃+ Xb, dg(XAΣ̃ATXT ))).



Result 4. The optimal values of µ and Σ are invariant under the transformation.

Proof. Let ξ = Aµ̃+ b and Λ = AΣ̃AT . Now,

ṽ =
1

|2πΣ̃|1/2

∫
b(r)(XAu + Xb) exp

{
−1

2
(u− µ̃)T Σ̃

−1
(u− µ̃)

}
du

=
1

|2πΛ|1/2

∫
b(r)(Xβ) exp

{
−1

2
(β − ξ)TΛ−1(β − ξ)

}
dβ

= B(r)(Xξ, dg(XΛXT ))

Then, substitution into (13) gives

XT
(
y −B(1)(Xξ, dg(XΛXT ))

)
− σ−2β ξ = 0.

Now, substitution into (14) gives

Λ =
[
XTdiag(B(2)(Xξ, dg(XΛXT )))X + σ−2β I

]−1
Hence, ξ and Λ satisfy first order optimality conditions.

6 Variational Information Criterion

6.1 Variational Bayesian Information Criterion (VBIC)

In this section we discuss the properties of the Bayesian information criterion in rela-
tion to Gaussian variational approximation.

We define the BIC as follows:

BIC = −2 log p(y|β̂) + p log n.

(Claeskens and Hjort 2010, 3.1)

In the variational approximation context, we approximate the BIC by the following
result, which we call the variational Bayesian information criterion (VBIC):

VBIC = −2 log p(y) + 2Eq[log p(β)].



Result 5. The VBIC is first order equivalent in probablity to the BIC. That is,

BIC = VBIC +Op(1).

Proof.

BIC− VBIC = 2yTX(µ− β̂)− 1Tn [2B(Xµ, dg(XΣXT ))− 2b(Xβ̂)]

+ p log(2π) + log |eΣ|+ p log n

= −1Tn [2B(Xµ, dg(XΣXT ))− 2b(Xβ̂)] + p log(2π)

+ p+ log |Σ|+ p log n+Op(n
−1) by (10)

Consider the term 1Tn [2B(Xµ, dg(XΣXT ))− 2b(Xβ̂)]. Using the Taylor series expan-
sion we obtain

1Tn [2B(Xµ, dg(XΣXT ))− 2b(Xβ̂)] = 2
n∑
i=1

1

2!
b(2)(xTi µ)xTi Σxi +

1

3!
b(4)(xTi µ)

[
xTi Σxi

]2
+Op(

[
xTi Σxi

]3
)

=

[
n∑
i=1

b(2)(xTi µ)xTi Σxi

]
+Op(n

−2). (15)

Now,

n∑
i=1

b(2)(xTi µ)xTi Σxi =
n∑
i=1

b(2)(xTi µ)tr
(
xix

T
i Σ
)

= tr

(
n∑
i=1

b(2)(xTi µ)xix
T
i Σ

)

= tr

 1

n

n∑
i=1

xix
T
i b

(2)(xTi µ)

[
σ−2β
n

I +
1

n

n∑
i=1

xix
T
i b

(2)(xTi µ)

]−1
= tr

[ 1

n

n∑
i=1

xix
T
i b

(2)(xTi µ)

][
1

n

n∑
i=1

xix
T
i b

(2)(xTi µ)

]−1
+Op(n

−1)


= tr(Ip) +Op(n

−1)

= p+Op(n
−1).



Hence,
1Tn [2B(Xµ, dg(XΣXT ))− 2b(Xβ̂)] = p+Op(n

−1). (16)

Now,

BIC− VBIC = p log(2π) + log |Σ|+ p log n+Op(n
−1)

= p log(2π) + p log(Op(n
−1)) + p log n+Op(n

−1)

= Op(1)

as required.

6.2 Variational Akaike Information Criterion (VAIC)

Following McGrory and Titterington (2007), we define the variational Akaike informa-
tion criterion (VAIC) as follows:

VAIC ≡ −2 log p(y|µ) + 2P

where P = 2 log p(y|µ)− 2Eq(β)[log p(y|β)]. We have:

log p(y|µ) = yTXµ− 1Tnb(Xµ) + 1Tnc(y)

Eq(β)[log p(y|β)] = yTXµ− 1TnB(Xµ, dg(XΣXT )) + 1Tnc(y)

Note that the AIC is given by:

AIC = −2 log p(y|β̂) + 2p

where β̂ = argmaxβ p(y|β).

(Claeskens and Hjort 2010, 2.3)

Result 6. Let the AIC and VAIC be defined as above. Then VAIC
p−→ AIC.

Proof. Using similar expansions to (15) and by (9) and (10) we have

VAIC− AIC = 2yTX(β̂ − µ)− 1Tn (2b(Xβ̂)− 2b(Xµ)) +Op(n
−1)

= Op(n
−1)



7 Kullback-Leibler Dominance

In this section, we prove that the Gaussian variational approximation of the marginal
likelihood p(y) always yields a tighter lower bound than a number of other variational
approximations.

7.1 Auxiliary Variables

Consider the auxiliary variable representation p(y,β, a) where p(y,β) =
∫
p(y,β, a) da.

Now, using Jensen’s inequality we have

log p(y,β) ≥
∫
q(a) log

[
p(y,β, a)

q(a)

]
da

for all q(a). The Gaussian variational approximation gives:

log p(y) ≥
∫
qG(β) log

[
p(y,β)

qG(β)

]
dβ ≡ log p

G
(y)

where qG(β) is the optimal Gaussian density function. Hence

log p
G

(y) ≥
∫
q(a)qG(β) log

[
p(y,β, a)

q(a)qG(β)

]
dadβ ≡ log p

A
(y).

Thus, the method of Gaussian variational approximation always gives a better approx-
imation to log p(y) than that of auxiliary variable representation.

7.2 Local Variational Approximation

In order to approximate p(y), the local variational method involves the bounding of
p(y|β) by a suitable funtion for which the integral

∫
p(y|β)p(β)dβ can be computed.

We consider the local variational approximation for the logistic case, where

p(y|β) = exp
{
yTXβ − 1Tn log[1Tn + exp(Xβ)]

}
.

We note the following representation of − log(1 + ex) as the maxima of a family of
parabolas:

− log(1 + ex) = max
ξ∈R

{
A(ξ)x2 − 1

2
x+ C(ξ)

}
for all x ∈ R



where

A(ξ) ≡ −tanh(ξ/2)/(4ξ)

and C(ξ) ≡ ξ/2− log(1 + eξ) + ξtanh(ξ/2)/4.

(Jaakkola and Jordan 2000).

This leads to the lower bound:

p(y|β) ≥ c(ξ) exp
{
βTF(ξ)β + f(ξ)Tβ

}
(17)

where

ξ = (ξ1, . . . , ξn) is a vector of variational parameters;

F(ξ) = XTdiag(A(ξ))X;

and f(ξ) =
(
yTX− 1

2
1TnX

)T
.

The following proof is adapted from Barber (2012, 28.5.2).

We have

p(y) ≥ c(ξ)

(2πσ2
β)p/2

∫
exp

{
−‖β‖

2

2σ2
β

}
exp

{
βTF(ξ)β + f(ξ)Tβ

}
dβ

=
c(ξ)

(2πσ2
β)p/2

∫
exp

{
−1

2
βTAβ + f(ξ)Tβ

}
dβ

where A = σ−2β I− 2F(ξ). Completing the square and integrating, we have

log p(y) ≥ log c(ξ) +
1

2
f(ξ)TA−1f(ξ)− p

2
log(σ2

β)− 1

2
log |A| ≡ B(ξ).

Now,

log p
G

(y) =

∫
qG(β) log

[
p(y,β)

qG(β)

]
dβ

≥ log c(ξ) + EqG
[
−1

2
βTAβ + f(ξ)Tβ

]
− p

2
log(2πσ2

β)− EqG [log qG(β)]

= log c(ξ) + EqG [log q̃(β)]− EqG [log qG(β)]− p

2
log(2πσ2

β) (18)

+ 1
2

log |2πA−1|+ 1
2
f(ξ)TA−1f(ξ)



where q̃(β) = N (β|A−1f(ξ,A−1). Now, EqG [log qG(β)]−EqG [log q̃(β)] is the Kullback-
Leibler distance between qG and q̃. This is minimised when qG(β) = q̃(β). Hence,
maximising (18) gives

log p
G

(y) ≥ log c(ξ) +
1

2
f(ξ)TA−1f(ξ)− p

2
log(σ2

β)− 1

2
log |A| ≡ B(ξ).

Thus, the method of Gaussian variational approximation always gives a better approx-
imation to log p(y) than that of local variational approximation.

8 Conclusion

Variational approximations have the potential to become an important tool in statisti-
cal inference, particularly in problems involving large datasets where the use of MCMC
becomes untenable. This project shows that for Bayesian generalised linear models,
the specific technique of Gaussian variational approximation yields estimators which
can be used for valid statistical inferences.
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