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1. Introduction 

Euler fluid flow refers to incompressible, inviscid fluid flow. On the surface of a 
rotating unit sphere, this gives rise to the Barotropic Vorticity Equation (BVE) 
(Lynch, 2009). 
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 Where   

   is the inverse spherical Laplacian,   is the spherical Jacobian,   the co-
latitude,   the longitude, and   the vorticity of the fluid, defined as the curl of the 
vector field. The vorticity hence corresponds to the rotation of the fluid.  

The typical method for computing solutions to the BVE is to decompose the 
vorticity into spherical harmonics. 
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Where the    (   ) are the Laplacian spherical harmonic functions, and the 
modes    ( ) can be found by solving the ordinary differential equations given by 
the Lie-Poisson structure (Zeitlin, 2004). 
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Where ∑    is understood to mean ∑ ∑   
    

 
   ,   is the Dirac Delta function and 

        
      

 are the structure coefficients. Note that we ignore the     case from here 

on as the differential equation for     is always trivial. 
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To approximate the solution to these ODEs, truncation is performed. Naïve 
truncation comes with the cost of breaking the Poisson structure. Zeitlin (2004) 

gives a formula for  
       
( )       

 which are to be used as the structure coefficients 

when truncating the system at     which preserves the Poisson structure. The 
new structure coefficients are dependent on the degree of truncation, and 

as      ,  
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The Poisson structure allows us to express the time evolution of any function, say 
 , of the     by taking the Poisson bracket of   with  , the Hamiltonian. 
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Where  (   ) is a matrix with the (   )   element given by ∑   ( )  ( )
( )       

              and 

 ( ) is a bijective map            (   )      (   )           
    . Essentially,  ( ) gives an ordering to the    . 

The Hamiltonian is the kinetic energy of the fluid, and is given by the following 
integral over the unit sphere    (Zeitlin, 2004). 
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To put the Hamiltonian in an appropriate form for use in calculating the Poisson 
bracket, we substitute    ∑          and simplify using the conjugation property 
    (  )     

̅̅ ̅̅ ̅̅  and the orthogonality relations ∫         ̅̅ ̅̅ ̅̅ 

            where 

             and             . The result is given by: 
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Our Poisson system can be thought of as a generalisation of a canonical 
Hamiltonian system. Whereas the Poisson bracket of two functions in the 
canonical framework is given by                where the matrix   is 
symplectic and constant, in this non-canonical framework we have       

     (   )    where the matrix  (   ) is anti-symmetric and linear in the modes 
   . 
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2. Integrabilitiy N=2 

For  =2, excluding the trivial     mode, there are 8 modes (            
                       ). The rank of the Poisson structure matrix  (   ) is 6. This 
degeneracy leads to conserved quantities known as Casimirs, which have the 
interesting property that the Poisson bracket of a Casimir with any arbitrary 
function (as opposed to just with the Hamiltonian) is zero. The method for finding the 
Casimirs is given by Zeitlin (2004), and they turn out to be of homogenous degree 2 
and 3. 
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For the system to be integrable, we require a number of integrals, or conserved 
quantities, equal to half the degrees of freedom in the system. Three such integrals 
were found by looking for polynomials   of the      such that       
     (   )    . These integrals are: 

 
       

           

    √    
                   √    

     

   √                         √     
     

 
Note that the Hamiltonian corresponds to the energy of the system and is also a 
conserved quantity, but it turns out not to be independent of the other integrals; it 
can be expressed as a function of the degree 2 Casimir    and   . 

 

3. Exact Solution N=2 

The system for     is exactly solvable. The differential equations are given by 
    

  
 (    )  (   )   . The system separates into two subsystems, the first of 

which is: 
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Using the fact that in order to have real solutions requires     (  )     , the 
solution to the above equation is just the harmonic oscillator in complex variables 
where     are constant: 
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The second subsystem can be expressed in the form where   is a 5x5 matrix linear 
in             : 
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Since     (  )     , the real and imaginary parts of each     and      are the 
same up to a factor of   . This can be used to transform the entire 8     variable 
system into a system of 8 purely real variables which correspond to the 8 unique 
real and imaginary parts of the    .  

In real variables, substituting in the exact solution for the first subsystem, the 
second subsystem is then of the form        ( ) , where  ( ) is       periodic. 
Floquet theory tells us there is a transformation,    ( )  such that          
where   is constant. Finding this transformation requires finding   such that 
    ̇          is constant. Assume that   is orthogonal, so     ̇       . 
Try the substitution      ,   constant, and differentiate with respect to time, so 
    ̇         Solving for   shows that there is indeed a solution, and we have 
the required transformation. 

 
There is then an orthogonal transformation     , found by taking the rows of    
to be the real and imaginary parts of the eigenvectors of  . The equation for   is 
then very simple:  
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Where   √
     

   
.  
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The solutions, where         are constant, are given by: 

                                                               

                                                                         

 
The explicit equations for the    ( ) can be found by applying the inverse 
transformations to these solution. 

Interestingly, as the frequencies are always rational multiples of each-other 
regardless of parameter choice, there is essentially only one frequency describing 
the second subsystem. Since there is only one other frequency in the entire system, 
namely   from the harmonic oscillator, we have two degrees of freedom in our 8 
variable system. Hence we would expect to find exactly six independent conserved 
quantities. At this stage we have 5 conserved quantities; the two Casimirs,   ,    
and   . Noting that: 
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Which is independent of time. Applying the inverse transformations to this 
expression gives an expression of homogenous degree six which is indeed 
conserved and independent of the other integrals. However, the drawback of this 
method is that we expect the new integral,   , could be expressed more succinctly; 
the expression derived from the above method can likely be expressed as a 
polynomial function of   ,   ,         and   . 

 

Of note is that by setting      √      and all but one mode     to zero, we get: 
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The solutions to these are the Rossby-Haurwitz waves, which are well known 
solutions the linearised Barotropic Vorticity Equation (Longuet-Higgins, 1964). 

 

4. Canonical Form N=2 

To attempt to express the system in action/angle form, the system can be 
transformed into canonical variables. Because of the degeneracy in the Poisson 
structure (we have 8 variables but the rank of the Poisson structure matrix is 6), 
the system will have 6 variables in canonical form. There exists a method for the 
transformation to canonical variables (Zeitlin, 1991). 
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The canonical variables obey the relations: 
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Upon transformation to canonical variables, many of our conserved quantities are 
no longer independent. We are left with 3 independent integrals, but the fact that 
we have 6 variables and we know the exact solution in the     has 2 degrees of 
freedom would suggest that four integrals exist; no new integral could be found by 
using brute forces searches up to degree 10 polynomials. The integrals are: 
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The Hamiltonian can be expressed in the following form, though for calculation 
purposes it should be expressed in terms of the    and   . 
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Further investigation could focus on finding action/angle variables for this 
Hamiltonian using Hamilton-Jacobi theory. Knowing this transformation would aid 
in describing all possible motions of the    ( ). 

 

5. Notes on N=3 

Truncation at  =3 yields a system with similar structure; the vector field separates 
into 3 sun-subsystems. Denote    (       (    )      (   )    ) where        . 

The differential equations can then be written: 
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Where   is constant, and    ̂ are linear in the    . The solution to the    
subsystem is again just the harmonic oscillator; the    subsystem can be solved 
using Floquet theory giving time periodic solutions, so Floquet theory can be 
applied again to the    system, although finding the required transformation 
would be perhaps prohibitively computationally intensive. 
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