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I here aim to investigate methods of modifying existing systems of cyclic mutually
nearly orthogonal latin squares to generate further sets of mutually nearly orthogonal
latin squares.

1 Preliminaries

1.1 Latin Squares

A latin square of order n is an n ⇥ n array wherein every item of an n-set, N ,
appears precisely once in each row and each column. Here, we use N = {0, . . . , n� 1}.



1.2 Mutually Orthogonal

Given two latin squares of order n on the set N , L = [l
ij

] and M = [m
ij

], we
define the superimposition of L onto M as the n⇥ n array A = [(l

ij

,m
ij

)
ij

] where i, j
are in N . L and M are said to be orthogonal if every ordered pair (↵, �) for ↵, � 2 N
appears precisely once in A. A set of latin squares are said to be mutually orthogonal
if they are pairwise orthogonal, denoted MOLS(n).

Mutually orthogonal latin squares are a tool of experimentation allowing for het-
erogeneity to be eliminated in two directions and di↵erent interventions investigated
(Raghavarao, Shrikhande & Shrikhande 2002). For instance, Tippett (1924) showed
a complete set of mutually orthogonal latin squares can be used to reduce an experi-
mental design of 56 runs to an experimental design of 52 runs, whilst ensuring that all
interventions are tested with all others in a pairwise manner.

The maximum size of a set of MOLS(n) may be restrictive to their utility. For
instance, the maximum size of a set of MOLS(6) is one. More generally, the maximum
size of a set of MOLS(2m) for a positive integer m may be small (Pasles 2003). In order
to generalise the experimental utility of mutually orthogonal latin squares, Williams
(1949) defined a residual design – mutually nearly orthogonal latin squares.

1.3 Mutually Nearly Orthogonal

Two latin squares of even order 2m on the set {0, . . . , 2m � 1}, L and M , are
said to be nearly orthogonal if the superimposition of L onto M yields an array A
containing each ordered pair (↵, �) for ↵, � 2 N,↵ 6= � at least once and the ordered
pair (↵,↵ + m) precisely twice. Similarly, a set of latin squares which are pairwise
nearly orthogonal are called mutually nearly orthogonal, denoted MNOLS(2m).

1.4 Cyclically Generated

A 1 ⇥ n vector can be used to denote a latin square of order n in the following
way.

Given a column vector C = (a0, . . . , an�1), some permutation of the elements of
{0, . . . , n � 1}, C represents an array wherein each cell, l

ij

in the array is then given
by l

ij

= a
i�1 + j � 1 (mod n).

That is,



[l
ij

] =

a0 a0 + 1 . . . a0 + n� 2 a0 + n� 1
a1 a1 + 1 . . . a1 + n� 2 a1 + n� 1
...

...
. . .

...
...

a
n�2 a

n�2 + 1 . . . a
n�2 + n� 2 a

n�2 + n� 1
a
n�1 a

n�1 + 1 . . . a
n�1 + n� 2 a

n�1 + n� 1

where the entry in each cell is computed (mod n). Then, since each row and each
column contains every element of {0, . . . , n� 1} precisely once, [l

i,j

] is a latin square.
We take C = (a0, . . . , an�1) to be a representation of the latin square generated in this
manner.

2 Method of Di↵erences

Raghavarao, Shrikhande and Shrikhande defined and investigated the Method of
Di↵erences construction in their investigation of MNOLS, demonstrating this construc-
tion to be highly useful for the generation and representation of cyclic MNOLS. Their
theorem (2002) is as follows.

Theorem. Let there exist t column vectors (a0i, a1i, . . . , a2m�1i)0 for i = 1, . . . , t
where each column vector is a permutation of the elements of the cyclic group Z2m =
{0, . . . , 2m � 1}. Furthermore, suppose for every i 6= j, i, j = 1, . . . t, among the 2m
di↵erences a0i � a0j, a1i � a1j, . . . , a2m�1i � a2m�1j (mod 2m), m occurs twice and all
other non-zero elements of Z2m occur once. Then by taking each of the t columns as
the first column of t latin squares and developing them in Z2m, we get t MNOLS.

2.1 Methods of Di↵erence Property

It is our aim to generate further sets of MNOLS from existing such sets. To this
end we say a set of vectors {C1, C2, . . . , Ct

} has the property P1 if they represent a set
of MNOLS constructible using the above method of di↵erences. That is, if, for each
C

i

= (a0i, a1i, . . . , an�1i) and for every i 6= j, i, j = 1, . . . , t ,among the 2m di↵erences
a0i�a0j, a1i�a1j, . . . , a2m�1i�a2m�1j (mod 2m), m occurs twice and all other non-zero
elements of Z2m occur once, then the set {C1, C2, . . . , Ct

} is said to possess P1. Hence
by Raghavarao, Shrikhande and Shrikhande’s theorem, the array represents a set of t
MNOLS(2m).



2.2 Di↵erence Vectors

Furthermore, we utilise stepwise di↵erence vectors. That is, for {C1, C2, . . . , Ct

}
we define t 1⇥ 2m vectors �

i

, i = 1, . . . , t where

�
i

= (�0i, �1i, . . . , �2m�2i, �2m�1i) and

�
�i

⌘ a
�i+1 � a

�i

(mod 2m).

Herein, any subscript i± 1 and j ± 1 is always taken to mean i± 1 (mod t) and j ± 1
(mod t) respectively. We note that {C1, C2, . . . , Ct

} has property P1 if 8i 2 {1, . . . , t},
�

i

is some permutation of the elements of the multiset {1, 2, . . . ,m � 1,m,m,m +
1, . . . , 2m� 2, 2m� 1}.

We note that if t = 3, the set {�
i

|1  i  3} represents all possible comparisons of
{C1, C2, C3}. Hence, for a set {C1, C2, C3} merely checking that for each i = 1, 2, 3, �

i

contains each non-zero element of Z2m at least once and m precisely twice is su�cient
to show that {C1, C2, C3} has property P1 and represents a set of 3 MNOLS(2m).

A further property of our construction of {�
i

|1  i  t} is that 8� 2 {0, . . . , 2m�
1}

tX

i=1

�
�,i

= a
�2 � a

�1 + a
�3 � a

�2 + · · ·+ a
�t�1 � a

�t

+ a
�1 � a

�t

⌘ 0 (mod 2m). (1)

3 Permuting entries of a Set with the Property P1

We investigate when modifying a set with property P1 by permuting the entries
of one C

i

of the set with some 2m�x fixed points yields a set also possessing property
P1.



3.1 x = 1

Claim: Assume {C1, C2, . . . , Ct

} is a set of t vectors with P1. It is not possible
to, by modifying precisely one C

j

, j 2 {1, . . . , t}, by permuting its entries with 2m� 1
fixed points, yield another set with P1.

Proof.

Suppose that we have two sets of t vectors both possessing P1; {C1, C2, . . . , Ct

} and
{C 0

1, C
0
2, . . . , C

0
t

}. Let it be the case that for all i 2 {1, . . . , t}\{j}, C
i

= C 0
i

and for all
� 2 {0, . . . , 2m�1}\{x1}, a�j = a0

�j

but a
x1j 6= a0

x1j
. Since C

j

is a permutation of length
2m of the elements of Z2m, every element of the set {0, . . . , 2m� 1} occurs once in C

j

.
But, if 8� 2 {0, . . . , 2m� 1}\{x1}, a�j = a0

�j

then a
x1j = a0

x1j
. This is a contradiction.

Hence, it is not possible to modify just one entry of one C
j

, j 2 {1, . . . , t}, of a set
{C1, C2, . . . , Ct

} possessing P1, creating a set also with P1.

3.2 x = 2

Claim: Assume {C1, C2, . . . , Ct

} is a set of t vectors with property P1. It is not
possible to, by modifying precisely one C

j

, j 2 {1, . . . , t}, by permuting its entries with
2m� 2 fixed points, yield another set with P1.

Proof.

Let there be two distinct sets of size t both possessing property P1; {C1, C2, . . . , Ct

}
and {C 0

1, C
0
2, . . . , C

0
t

}. Let it be the case that 8i 2 {1, . . . , t}\{j}, C
i

= C 0
i

and for C
j

,
for all � 2 {0, . . . , 2m� 1}\{x1, x2}, a�j = a0

�j

but a
x1j 6= a0

x1j
and a

x2j 6= a0
x2j

.

Since C
j

is a permutation of Z2m, each element of {0, . . . , 2m�1} occurs precisely
once in C

j

. Hence, {a
x1j, ax2j} = {a0

x1j
, a0

x2j
}. Thus a

x1j = a0
x2j

and a
x2j = a0

x1j
.

In addition, we have the requirement that in our stepwise distance vectors are a
permutation the multiset {1, 2, . . . ,m�1,m,m,m+1, . . . , 2m�2, 2m�1}. All �

�i

are
unchanged for � 2 {0, . . . , 2m�1}\{x1, x2} and �

x1i = �0
x1i

for all i 2 {1, . . . , t}\{j, j�
1}. Furthermore, we require that

{�
x1j, �x2j} = {�0

x1j
, �0

x2j
}

and
{�

x1j�1, �x2j�1} = {�0
x1j

, �0
x2j

}.

This gives us two cases; that �
x1j = �0

x1j
and �

x2j = �0
x2j

or �
x1j = �0

x2j
and

�
x2j = �0

x1j
.



1. In the first case, we have that since

�
x1j = �0

x1j
then

a
x1j+1 � a

x1j = a0
x1j+1 � a0

x1j

since we have that

a
x1j+1 = a0

x1j+1 clearly

a
x1j = a0

x1j
.

This is a contradiction since a
x1j cannot equal a

0
x1j

.

2. In the second case, we see that,

tX

i=1

�
�i

⌘ 0 (mod 2m) by equation (1)

so
tX

i=1

�
�i

⌘
tX

i=1

�0
�i

(mod 2m).

Since �
x1i = �0

x1i
8i 2 {1, . . . , t}\{j, j � 1}, we must have that

�
x1j + �

x1j�1 ⌘ �0
x1j

+ �0
x1j�1 (mod 2m)

but �
x1j = �0

x2j

so �0
x2j

+ �
x1j�1 ⌘ �0

x1j
+ �0

x1j�1 (mod 2m). In which case,

a0
x2j+1 � a0

x2j
+ a

x1j � a
x1j�1 ⌘ a0

x1j+1 � a0
x1j

+ a0
x1j

� a0
x1j�1 (mod 2m).

However, a
x1j�1 = a0

x1j�1 and a0
x2j

= a
x1j.

Thus a0
x2j+1 = a0

x1j+1.

This is a contradiction since 8i 2 {1, . . . , t}\{j}, C
i

= C 0
i

. Therefore, it is not
possible to modify a set {C1, . . . , Ct

} with property P1 by permuting the entries of one
C

j

, j 2 {1, . . . , t}, with 2m� 2 fixed points, create a set with the same property.

3.3 x = 3

Claim: Assume {C1, C2, C3} is a set of 3 vectors with property P1. It is not
possible to, by modifying precisely one C

j

, j 2 {1, . . . , t}, by permuting its entries
with 2m� 3 fixed points, yield another set with P1.



Proof.

Let the set {C1, C2, C3} be a set of 3 column vectors where C
i

= (a0i, a1i, . . . , a2m�1i)0

for 1  i  t and each C
i

is a permutation of the elements of the cyclic group Z2m.
Let it be the case that property P1 holds for {C1, C2, C3}.

Consider the set {C 0
1, C

0
2, C

0
3} where 8i 2 {1, 2, 3}\{j} C

i

= C 0
i

and for all ↵ 2
Z2m\{x1, x2, x3}, where x1, x2 and x3 are distinct, a0

↵j

= a
↵j

but a0
xnj

6= a
xnj for n =

1, 2, 3. Suppose that {C 0
1, C

0
2, C

0
3} also has property P1.

As {C 0
1, C

0
2, C

0
3} has property P1 then

{a0
x1j

, a0
x2j

, a0
x3j

} = {a
x1j, ax2j, ax3j},

{�0
x1j

, �0
x2j

, �0
x3j

} = {�
x1j, �x2j, �x3j} and

{�0
x1j�1, �

0
x2j�1, �

0
x3j�1} = {�

x1j�1, �x2j�1, �x3j�1}.

Without loss of generality, we label our columns such that a0
x1j

= a
x2j. It is clearly

consequent that a0
x2j

= a
x3j and a0

x3j
= a

x1j.

Furthermore, clearly �
xnj+1 = �0

xnj+1 for n = 1, 2, 3 since �
xnj+1 = a

xnj�1 � a
xnj+1.

We then have two cases; 1. �0
x3j

= �
x1j or 2. �

0
x3j

= �
x2j

1. In the first case, then a
x3j+1 � a

x1j = a
x1j+1 � a

x1j from definition of �.

) a
x3j+1 = a

x1j+1 which is a contradiction.

2. In the second case,

�0
x3j

= �
x2j which implies that

�0
x1j

= �
x3j and

�0
x2j

= �
x1j

Furthermore, let �0
x1j�1 = �

xsj�1 where s, t 2 {2, 3}, s 6= t and note that if

�0
xsj�1 = �

x1j�1 then

�0
xtj�1 = �

xtj�1. This would give that

a0
xtj

� a0
xtj�1 = a

xtj � a
xtj�1 which implies that

a0
xtj

= a
xtj

which is a contraction. Hence, �0
xsj�1 = �

xtj�1 and �0
xtj�1 = �

xsj�1.

The following two cases are possible; (a) s = 2 and t = 3 or (b) s = 3 and t = 2



(a) s = 2, t = 3

Then �0
x3j�1 = �

x1j�1

implies that a0
x3j

� a
x3j�1 ⌘ a

x1j � a
x1j�1 (mod 2m)

so a
x1j � a

x3j�1 ⌘ a
x1j � a

x1j�1 (mod 2m)

gives that a
x3j�1 ⌘ a

x1j�1 (mod 2m)

(b) s = 3, t = 2

This gives that since

��
x1j+1 ⌘ �

x1j + �
x1j�1 (mod 2m)

⌘ �0
x1j

+ �0
x1j�1 (mod 2m)

⌘ �
x3j + �

x3j�1 (mod 2m)

⌘ ��
x3j+1 (mod 2m)

⌘ �0
x3j

+ �0
x3j�1 (mod 2m)

⌘ �
x2j + �

x2j�1 (mod 2m)

⌘ ��
x2j+1 (mod 2m)

we have ��
x1j+1 ⌘ ��

x2j+1 ⌘ ��
x2j+1 (mod 2m), clearly a contradiction.

Hence, it is not possible to, by modifying 3 entries of one element of a set possessing
P1, create another set with the same property.

3.4 x = 4

Let there exist two sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} where each C

i

, C 0
i

for i 2
{1, 2, 3} is a vector of length 2m, some permutation of the elements Z2m, such that the
P1 holds for both sets. Suppose that C

i

= C 0
i

8i 2 {1, 2, 3}\{j} and C 0
j

is a permutation
of the elements of C

j

with exactly 2m� 4 fixed points.

For example, consider the sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} where

C1

C2

C3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 8 7 9 2 5 3 6
5 7 0 6 9 4 3 8 2 1

and



C 0
1

C 0
2

C 0
3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 8 7 9 2 5 3 6
5 7 9 6 3 0 4 8 2 1

.

The sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} both possess property P1 and note that in

this example with 2m = 10, x = 4 is possible.

The restrictions upon the case where x = 4, however are strong.

3.4.1 Restrictions upon x = 4

Assume {C1, C2, C3}, {C 0
1, C

0
2, C

0
3} are sets of vectors with each element of each set

a permutation of the elements of Z2m and let both sets possess property P1. Let it be
the case that 8i 2 {1, 2, 3}\{j}, C

i

= C 0
i

and C 0
j

is a permutation of the elements of C
j

with exactly 2m� 4 fixed points. We label the set of positions at which C
j

deranged
{x1, x2, x3, x4}.

Without loss of generality, we label these such that a
x1 and a

x2j such that a
x2j =

a0
x1j

. We then are left with two choices; a0
x2j

= a
x1j or a

0
x2j

6= a
x1j.

1. If it were the case that a0
x2j

= a
x1j then we would have that a0

x3j
= a

x4j and
a0
x4j

= a
x3j. We then have one of the following subcases: �0

x1j
= �

x1j, �
0
x1j

= �
x2j,

�0
x1j

= �
x3j or �

0
x1j

= �
x4j.

• �0
x1j

= �
x1j ) a

x1j+1 � a0
x1j

= a
x1j+1 � a

x1j ) a
x2j = a

x1j

• Similarly, �0
x1j

= �
x2j ) a

x1j+1 � a0
x1j

= a
x2j+1 � a

x2j

) a
x1j+1 = a

x2j+1

• Since our labelling is arbitrary and x3 and x4 are thus far interchangeable
without loss of generality we label x3 such that �0

x1j
= �

x3j.

We then have that, for the same reasons, �0
x2j

= �
x4j.

Now, considering �0
x1j�1, we have the subcases that �0

x1j�1 = �
x1j�1, �0

x1j�1 =
�
x2j�1, �0

x1j�1 = �
x3j�1 or �0

x1j�1 = �
x4j�1

• �0
x1j�1 = �

x1j�1 ) a
x2j = a

x1j



• �0
x1j�1 = �

x2j�1 ) a
x1j�1 = a

x2j�1

• �0
x1j�1 = �

x3j�1

) �0
x1j�1 + �0

x1j
⌘ �

x3j�1 + �
x3j (mod 2m)

) �
x1j+1 ⌘ �

x3j+1 ⌘ m (mod 2m) Furthermore, it must also be the case
that �0

x2j
= �

x4j and �0
x2j�1 = �

x4j�1. Hence
�0
x2j�1 + �0

x2j
⌘ �

x4j�1 + �
x4j (mod 2m)

) �
x2j+1 ⌘ �

x4j+1 ⌘ m.
But then we have 4 occurrences of m in the multiset �

j+1

• ) �0
x1j�1 = �

x4j�1 and �0
x2j�1 = �

x3j�1

We then have two possibilities:

(a) �0
x3j

= �
x1j. In this case �0

x4j
= �

x2j, �
0
x3j�1 = �

x2j�1 and �0
x4j�1 = �

x1j�1.
This can be shown graphically by the following;

x1 33

⌦⌦ %%

x2
ss

⌦⌦⌅⌅
x4 33

KK CC

x3
ss

KKee

where a black vector represents the equivalence of a0
x↵j

to a
x⌧ j, a dotty vector

the equivalence of �0
x↵j

to �
x�j

and a squiggly vector the equivalence of �0
x↵j�1

to �
x�j�1. In a manner, each vector represents the mapping f : Z2m ! Z2m

where f(a) = a0 and f(�) = �0.

To further indulge this rabbit hole, I note that the system of equations given
by this eventuality give that since

�
x1j ⌘ a

x1j+1 � a
x1j ⌘ a0

x1j+1 � a0
x1j

⌘ a
x3j+1 � a

x4j (mod 2m) (2)

�
x2j ⌘ a

x2j+1 � a
x2j ⌘ a0

x2j+1 � a0
x2j

⌘ a
x4j+1 � a

x3j (mod 2m) (3)

addition of equations (2) and (3) give that

a
x1j+1 � a

x1j + a
x2j+1 � a

x2j ⌘ a
x3j+1 � a

x3j + a
x4j+1 � a

x4j (mod 2m)

) �
x1j + �

x2j ⌘ �
x3j + �

x4j (mod 2m)



Furthermore,

�
x1j�1 ⌘ a

x1j � a
x1j�1 ⌘ a0

x1j
� a0

x1j�1 ⌘ a
x3j � a

x4j�1 (mod 2m) (4)

�
x2j�1 ⌘ a

x2j � a
x2j�1 ⌘ a0

x2j
� a0

x2j�1 ⌘ a
x4j � a

x3j�1 (mod 2m) (5)

addition of equations (4) and (5) give that

a
x1j � a

x1j�1 + a
x2j � a

x2j�1 ⌘ a
x3j � a

x3j�1 + a
x4j � a

x4j�1 (mod 2m)

) �
x1j�1 + �

x2j�1 ⌘ �
x3j�1 + �

x4j�1 (mod 2m)

It follows that

�
x1j+1 + �

x2j+1 ⌘ �
x3j+1 + �

x4j+1 (mod 2m)

(b) �0
x3j

= �
x2j. In this case, �0

x4j
= �

x1j, �
0
x3j�1 = �

x1j�1 and
�0
x4j�1 = �

x2j�1. This can be shown graphically by the following;

x1 33

 %%

x2
ss

⌅⌅
x4 33

CCSS

x3
ss

ee SS

where a black vector represents the equivalence of a0
x↵j

to a
x⌧ j, a dotty vector

the equivalence of �0
x↵j

to �
x�j

and a squiggly vector the equivalence of �0
x↵j�1

to �
x�j�1. In a manner, each vector represents the mapping f : Z2m ! Z2m

where f(a) = a0 and f(�) = �0.

Nearly identically to the above case (a),

�
x1j ⌘ a

x1j+1 � a
x1j ⌘ a0

x1j+1 � a0
x1j

⌘ a
x4j+1 � a

x3j (mod 2m) (6)

�
x2j ⌘ a

x2j+1 � a
x2j ⌘ a0

x2j+1 � a0
x2j

⌘ a
x3j+1 � a

x4j (mod 2m) (7)

addition of equations (6) and (7) give that

a
x1j+1 � a

x1j + a
x2j+1 � a

x2j ⌘ a
x3j+1 � a

x3j + a
x4j+1 � a

x4j (mod 2m)

) �
x1j + �

x2j ⌘ �
x3j + �

x4j (mod 2m)

Furthermore,

�
x1j�1 ⌘ a

x1j � a
x1j�1 ⌘ a0

x1j
� a0

x1j�1 ⌘ a
x4j � a

x3j�1 (mod 2m) (8)



�
x2j�1 ⌘ a

x2j � a
x2j�1 ⌘ a0

x2j
� a0

x2j�1 ⌘ a
x3j � a

x4j�1 (mod 2m) (9)

addition of equations (8) and (9) give that

a
x1j � a

x1j�1 + a
x2j � a

x2j�1 ⌘ a
x3j � a

x3j�1 + a
x4j � a

x4j�1 (mod 2m)

) �
x1j�1 + �

x2j�1 ⌘ �
x3j�1 + �

x4j�1 (mod 2m)

It follows that

�
x1j+1 + �

x2j+1 ⌘ �
x3j+1 + �

x4j+1 (mod 2m)

I have been unable to find or produce examples of either of the eventualities (a)
or (b) and suspect that this indicates either that the necessary condition that

�
x1j�1 + �

x2j�1 ⌘ �
x3j�1 + �

x4j�1,

�
x1j + �

x2j ⌘ �
x3j + �

x4j and

�
x1j+1 + �

x2j+1 ⌘ �
x3j+1 + �

x4j+1

are too strenuous to be practically useful. Furthermore, I believe that there
is an additional property of these objects with property P1 that preclude this
eventuality.

2. In the case that a0
x2j

6= a
x1j, as x3 is arbitrary and as yet unspecified, without

loss of generality we label the positions such that a0
x2j

= a
x3j.

Since a0
x3j

= a
x1j

) a0
x4j

= a
x4j, a contradiction, we therefore have that

a0
x3j

= a
x4j and a0

x4j
= a

x1j.

We have that

{�0
x1j�1, �

0
x2j�1, �

0
x3j�1, �

0
x4j�1} = {�

x1j�1, �x2j�1, �x3j�1�x4j�1},
{�0

x1j
, �0

x2j
, �0

x3j
, �0

x4j
} = {�

x1j, �x2j, �x3j�x4j}.

All arithmetic in the subscript of x is taken modulo 4.

This give the conditions that for a 2 {1, . . . , 4} since

• �0
xaj

= �
xaj ) a0

xaj
= a

xaj is a contradiction and



• �0
xaj

= �
xa+1j ) a0

xaj+1 = a
xa+1j+1 is a contradiction, then

• �0
xaj

= �
xa+2j or �

0
xaj

= �
xa+3j.

Furthermore, if there are some �0
xaj

= �
xa+2j and some �0

xaj
= �

xa+3j we again reach
the contradiction that for some b 2 {1, . . . 4}, �0

xbj
= �

xbj
. Hence we have two

possibilities for mappings of �0
xaj

. That is, either 8a 2 {1, . . . , 4}, �0
xaj

= �
xa+2j

or 8a 2 {1, . . . , 4}, �0
xaj

= �
xa+3j.

Similarly, we have two possibilities for mappings of �0
xaj�1. Firstly that 8a 2

{1, . . . , 4}, �0
xaj�1 = �

xa+2j�1 or secondly that 8a 2 {1, . . . , 4}, �0
xaj�1 = �

xa+3j�1.

Combining these two possibilities for each set of variables, we have four cases.
(a) is the case that �0

xaj
= �

xa+2j and �0
xaj�1 = �

xa+2j�1, (b) is that �0
xaj

= �
xa+3j

and �0
xaj�1 = �

xa+3j�1, (c) is the case that �0
xaj

= �
xa+2j and �0

xaj�1 = �
xa+3j�1 and

(d) is the case that �0
xaj

= �
xa+3j and �0

xaj�1 = �
xa+2j�1

(a) Suppose that 8a 2 {1, . . . , 4}, �0
xaj

= �
xa+2j and

�0
xaj�1 = �

xa+2j�1.

Then

��
xaj+1 ⌘ �0

xaj
+ �0

xaj�1 (mod 2m)

⌘ �
xa+2j + �0

xa+2j�1 (mod 2m)

⌘ ��
xa+2j+1 (mod 2m)

and

��
xa+1j+1 ⌘ �0

xa+1j
+ �0x

a+1j � 1 (mod 2m)

⌘ �
xa+3)j

+ �0x
a+3)j � 1 (mod 2m)

⌘ ��
xa+3j+1 (mod 2m)

which is a contradiction as it implies that the multiset
{1, . . . ,m,m, . . . , 2m� 1} contains four copies of m.

(b) Suppose that 8a 2 {1, . . . , 4}, �0
xaj

= �
xa+3j and

�0
xaj�1 = �

xa+3j�1.

Then

��
xaj+1 ⌘ �0

xaj
+ �0

xaj�1 (mod 2m)

⌘ �
xa+3j + �0

xa+3j�1 (mod 2m)



⌘ ��
xa+3j+1 (mod 2m)

and

��
xa+1j+1 ⌘ �0

xa+1j
+ �0

xa+1j�1 (mod 2m)

⌘ �
xa)j

+ �0
xaj�1 (mod 2m)

⌘ ��
xaj+1 (mod 2m)

which is again a contradiction as it implies that the multiset
{1, . . . ,m,m, . . . , 2m� 1} contains four copies of m.

(c) Suppose that 8a 2 {1, . . . , 4}, �0
xaj

= �
xa+2j and

�0
xaj�1 = �

xa+3j�1.

Graphically

x1
//

⇢⇢

x2

✏✏yy

ss

x4

OO 99

33 x3
oo

[[ SS

where a black vector represents the mapping of a0
x↵j

! a
x↵+1j, a dotty

vector the mapping of �0
x↵j

! �
x↵+2j and a squiggly vector the mapping of

�0
x↵j�1 ! �

x↵+3j�1.

To extend this case, it is apparent that the system of equations

�
x1j ⌘ a

x1j+1 � a
x1j ⌘ a

x3j+1 � a
x4j (mod 2m) (10)

�
x2j ⌘ a

x2j+1 � a
x2j ⌘ a

x4j+1 � a
x1j (mod 2m) (11)

�
x3j ⌘ a

x3j+1 � a
x3j ⌘ a

x1j+1 � a
x2j (mod 2m) (12)

�
x4j ⌘ a

x4j+1 � a
x4j ⌘ a

x2j+1 � a
x3j (mod 2m) (13)

give that the addition of (11) to (13) yields the necessary condition that

a
x2j + a

x4j ⌘ a
x1j + a

x3j (mod 2m). (14)

Similarly, addition of equations (15) and (17)

�
x1j�1 ⌘ a

x1j � a
x1j�1 ⌘ a

x3j � a
x2j�1 (mod 2m) (15)

�
x2j�1 ⌘ a

x2j � a
x2j�1 ⌘ a

x4j � a
x3j�1 (mod 2m) (16)



�
x3j�1 ⌘ a

x3j � a
x3j�1 ⌘ a

x1j � a
x4j�1 (mod 2m) (17)

�
x4j�1 ⌘ a

x4j � a
x4j�1 ⌘ a

x2j � a
x1j�1 (mod 2m) (18)

give that
a
x1j�1 + a

x3j�1 ⌘ a
x2j�1 + a

x4j�1 (mod 2m). (19)

Subtracting equation (19) from (14) then gives that

�
x1j�1 + �

x3j�1 ⌘ �
x2j�1 + �

x4j�1 (mod 2m). (20)

(d) Suppose that 8a 2 {1, . . . , 4} �0
xaj

= �
xa+3j and �0

xaj�1 = �
xa+2j�1.

Again we have the diagram that

x1
//

⇢⇢

x2

✏✏yy

ss

x4

OO 99

33 x3
oo

[[ SS

where a black vector represents the mapping of a0
x↵j

! a
x↵+1j, a dotty

vector the mapping of �0
x↵j

! �
x↵+3j and a squiggly vector the mapping of

�0
x↵j�1 ! �

x↵+2j�1.

To extend this case, it is apparent that the system of equations

�
x1j ⌘ a

x1j+1 � a
x1j ⌘ a

x2j+1 � a
x3j (mod 2m) (21)

�
x2j ⌘ a

x2j+1 � a
x2j ⌘ a

x3j+1 � a
x4j (mod 2m) (22)

�
x3j ⌘ a

x3j+1 � a
x3j ⌘ a

x4j+1 � a
x1j (mod 2m) (23)

�
x4j ⌘ a

x4j+1 � a
x4j ⌘ a

x1j+1 � a
x2j (mod 2m) (24)

give that (21) plus (23) yields

a
x1j+1 + a

x3j+1 ⌘ a
x2j+1 + a

x4j+1 (mod 2m) (25)

as in the previous eventuality.

Similarly, the addition of (26) and (28) of the following equations

�
x1j�1 ⌘ a

x1j � a
x1j�1 ⌘ a

x4j � a
x3j�1 (mod 2m) (26)

�
x2j�1 ⌘ a

x2j � a
x2j�1 ⌘ a

x1j � a
x4j�1 (mod 2m) (27)

�
x3j�1 ⌘ a

x3j � a
x3j�1 ⌘ a

x2j � a
x1j�1 (mod 2m) (28)



�
x4j�1 ⌘ a

x4j � a
x4j�1 ⌘ a

x3j � a
x2j�1 (mod 2m) (29)

yields the necessary condition that

a
x2j + a

x4j ⌘ a
x1j + a

x3j (mod 2m) (30)

in this case too.

Subtracting equation (30) from (25) then gives that

�
x1j�1 + �

x3j�1 ⌘ �
x2j�1 + �

x4j�1 (mod 2m) (31)

It is worth noting that cases (c) and (d) are isomorphic where we consider the
bijective mapping of the labelling of C

j+1 ! C
j�1 and C

j�1 ! C
j+1, given that

the set {C1, C2, C3} is unordered.

For this reason, we will refer to a subset {x1, x2, x3, x4} of an array

C1

C2

C3

possessing the property that for some and some distinct j, k,

a
x1k + a

x3k ⌘ a
x2k + a

x4k (mod 2m)

a
x2j + a

x4j ⌘ a
x1j + a

x3j (mod 2m)

�
x1j�1 + �

x3j�1 ⌘ �
x2j�1 + �

x4j�1 (mod 2m)

as having property P2.

3.4.2 Property P2

Interestingly, property P2 is not a su�cient condition for a swap to result in a
set with property P1. That is, we may take a set of mutually nearly orthogonal
latin squares and isolate a required set {x1, x2, x3, x4} with property P2 yet still
be unable to produce a further set of by way of deranging these entries to form
a second set of mutually nearly orthogonal latin squares from the first. Hence,
property P2 is necessary for property P1 in our swapped array, but not su�cient.
For instance, consider the following set of vectors {C1, C2, C3} with proper P1.



C1

C2

C3

=
0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 3 5 7 9 11 13 0 2 4 6 8 10 12
8 4 1 13 11 2 10 9 0 7 5 12 3 6

.

The set of vectors {C1, C2, C
0
3} also posses property P1 where C 0

3 is distinct from
C3 only in positions containing 0, 3, 9 and 12, specifically

C1

C2

C 0
3

=
0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 3 5 7 9 11 13 0 2 4 6 8 10 12
8 4 1 13 11 2 10 12 9 7 5 3 0 6

.

Note that we can label these positions such that a0
x1j

= a
x2j = 12, a0

x2j
= a

x3j = 3,
a0
x3j

= a
x4j = 0 and a0

x4j
= a

x1j = 9 and thus

a
x1j + a

x3j ⌘ a
x2j + a

x4j ⌘ 12 (mod 2m)

and a
x1j�1 + a

x3j�1 ⌘ a
x2j�1 + a

x4j�1 ⌘ 10 (mod 2m)

However, the positions filled in the jth row containing 0, 3, 10 and 13 of C3 also
fulfil the property in that

a
x1j�1 + a

x3j�1 ⌘ a
x2j�1 + a

x4j�1 (mod 2m) since

2 + 7 ⌘ 13 + 10 (mod 14),

0 + 13 ⌘ 3 + 10 (mod 14)

) a
x2j + a

x4j ⌘ a
x1j + a

x3j (mod 2m) and

6 + 12 ⌘ 11 + 7 (mod 2m)

) �
x1j�1 + �

x3j�1 ⌘ �
x2j�1 + �

x4j�1 (mod 2m)

but no derangement of these entries gives a set possessing property P1.

This is illustrated by the following list. Note that the equivalences above give
that the entry with 13 in C 0

3 would become 10 or 3.

•
C1

C2

C 0
3

=
0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 3 5 7 9 11 13 0 2 4 6 8 10 12
8 4 1 10 11 2 � 12 9 7 5 � � 6

) �0
3 = (6, 11, 1, 7, 7, 3,�, 12,�, 2, 5, 13,�, 7) (three copies of 7 in �0

3

not allowable)



•
C1

C2

C 0
3

=
0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 3 5 7 9 11 13 0 2 4 6 8 10 12
8 4 1 3 11 2 � 12 9 7 5 � � 6

) �0
3 = (6, 11, 1, 0, 7, 3,�, 12,�, 2, 5, 13,�, 7) (0 in �0

3 not allowable)

3.5 x = 5

Consider the sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} where

C1

C2

C3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 8 7 9 2 5 3 6
5 7 9 6 3 0 4 8 2 1

and
C 0

1

C 0
2

C 0
3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 8 7 9 2 5 3 6
5 8 7 9 3 6 4 0 2 1

.

The sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} both possess P1 and note that in this ex-

ample with 2m = 10, x = 5 is possible.

3.6 x = 6

Consider the sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} where

C1

C2

C3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 7 9 8 2 5 3 6
9 5 7 6 1 3 8 2 4 0

and
C 0

1

C 0
2

C 0
3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 7 9 8 2 5 3 6
5 9 7 2 1 6 8 0 4 3

.

The sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} both possess P1 and note that in this ex-

ample with 2m = 10, x = 6 is possible.



3.7 x = 7

Consider the sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} where

C1

C2

C3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 7 9 8 2 5 3 6
5 6 9 2 0 7 4 8 1 3

and
C 0

1

C 0
2

C 0
3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 7 9 8 2 5 3 6
5 9 7 2 1 6 8 0 4 3

.

The sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} both possess P1 and note that in this ex-

ample with 2m = 10, x = 7 is possible.

3.8 x = 8

Consider the sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} where

C1

C2

C3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 7 9 8 2 5 3 6
5 6 9 2 0 7 4 8 1 3

and
C 0

1

C 0
2

C 0
3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 7 9 8 2 5 3 6
5 7 3 2 1 9 8 0 6 4

.

The sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} both possess P1 and note that in this ex-

ample with 2m = 10, x = 8 is possible.



3.9 x = 2m

Consider the sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} where

C1

C2

C3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 7 9 8 2 5 3 6
5 6 9 2 0 7 4 8 1 3

and
C 0

1

C 0
2

C 0
3

=
0 1 2 3 4 5 6 7 8 9
1 0 4 7 9 8 2 5 3 6
9 5 7 6 1 3 8 2 4 0

.

The sets {C1, C2, C3} and {C 0
1, C

0
2, C

0
3} both possess P1 and note that in this ex-

ample with 2m = 10, x = 8 is possible.

4 Reflection property

Claim: For a set {C1, C2, C3} with P1 if 8k 2 {1, . . . , 3}, i 2 {0, . . . , 2m� 1},

a
ki

+ a
k2m�1�i

= 2m� 1

this is equivalent to a similar property of the di↵erence array; that for all j 2 {1, . . . , 3}, i 2
{0, . . . , 2m� 1},

�
ki

+ �
k2m�1�i

⌘ 0 (mod 2m).

Proof.

Forward
Consider a set {C1, C2, C3} with P1 and the additional property that a

ki

+
a
k2m�1�i

= 2m� 1 for all k 2 {1, 2, 3}, i 2 {0, . . . , 2m� 1}.Then as

�
ki

+ �
k2m�1�i

⌘ a
k+1i � a

k,i

+ a
k+12m�1�i

� a
k2m�1�i

(mod 2m)

⌘ (a
k+1i + a

k+12m�1�i

)� (a
ki

+ a
k2m�1�i

) (mod 2m)

⌘ 2m� 1� (2m� 1) (mod 2m)

⌘ 0 (mod 2m)



Reverse
Consider our set with the Methods of Di↵erence property and corresponding
stepwise di↵erence vectors having the property that for all k 2 {1, 2, 3}, i 2
{0, . . . , 2m� 1},

�
ki

+ �
k2m�1�i

= 0.

Firstly we note that already, 8i 2 {0, . . . , 2m�1}, a1i+a22m�1�i

= 2m�1. Then,
we note that by our definition in the case where k = 1, then

a2i � i+ a22m�1�i

� (2m� 1� i) ⌘ 0 (mod 2m) therefore

a2i + a22m�1�i

⌘ 2m� 1 (mod 2m)

Similarly, since �3i + �3(2m�1�i) = 0 we have that

i� a3i + (2m� 1� i)� a3n�1�i

⌘ 0 (mod 2m) hence

a3i + a32m�1�i

= 2m� 1

5 Potential Application of Sets of Nearly Orthogo-

nal Latin Squares to Latin Hypercube Sampling

A latin hypercube, notated LHC, is an n ⇥ d matrix, wherein each column is a
permutation of some n set. It is said to have d factors. Hence, simply by transposing
an array representing a set of mutually nearly orthogonal latin squares, we obtain a
latin hypercube.

Latin hypercube sampling is a method of experimental design often implemented
in computer experiments and numerical integration (Tang 2008). It is performed by
selecting a latin hypercube design and using the entries of this design to signify at
which point on each parameter a sample is taken. Often used as an alternative to
random selection, it stratifies sampling over the desired d parameters (Tang 1993).

However, as with all tools used by persons out of the field of their development, the
method is prone to deficiencies in implementation. The vast array of latin hypercubes
to choose from allows for the selection of less appropriate latin hypercubes. This
potentially leads to a decrease in their statistical relevance as an experimental tool.
It is known that latin hypercubes with good space-filling properties are beneficial for
experimental design (Tang 2008).



It is also known that latin hypercubes desirable for experimental design have
space-filling properties and low correlation between variables.

I suggest that sets of mutually nearly orthogonal latin squares could be advanta-
geous for latin hypercube selection.

For instance, we use the following set of mutually nearly orthogonal latin squares
to generate a latin hypercube of factor 3.

C1

C2

C3

=
0 1 2 3 4 5 6 7 8 9 10 11
1 3 5 7 9 11 0 2 4 6 8 10
4 7 1 9 2 6 11 3 10 0 5 8

LHC =

0 1 4
1 3 7
2 5 1
3 7 9
4 9 2
5 11 6
6 0 11
7 2 3
8 4 10
9 6 0
10 8 5
11 10 8

Which gives the following 12 ⇥ 12 ⇥ 12 design, where the first column represents
the x variable, the second column represents y, the third column z and we cut away
lines for visibilities sake.



x

y

z

We note the good space-filling properties of the above LHC.

Since latin hypercubes based upon mutually nearly orthogonal latin squares inherit
property P1, we find that the distances between any two points projected on any
of the

�
d

2

�
perimeter planes also take the values multiset {1, 2, . . . ,m � 1,m,m,m +

1, . . . , 2m� 2, 2m� 1}. As shown by Joseph and Hung (2008), such a stratification of
distances minimises correlation and yields a LHC with good space-filling properties.
The authors do recognise, however, that the inverse relation between correlation and
space-filling is not one-to-one. Such designs, therefore, would prove useful for their
inherent space-filling properties.

6 Conclusion

Whilst showing great promise for exploitation in computational and physical ex-
perimental design, nearly orthogonal latin squares have yet to be fully described. Meth-
ods of generating nearly orthogonal latin squares of many orders are yet to be devel-
oped, although this is an area of great promise. I point to the work of my supervisor,
Dr Diane Donovan, and her co-author Dr Joanne Hall.



Throughout my AMSI vacation research scholarship, I have investigated some
properties of mutually nearly orthogonal latin squares. Primarily, I was concerned
with the ability to swap certain rows within sets of mutually nearly orthogonal latin
squares, producing distinct sets with the same property. I have found that such row
exchanges are not possible for swaps of less than four rows. Even in the case that we
are swapping four rows, designs that allow this are very rare. The highly restrictive
necessary conditions for this case are not always su�cient and no algorithm for identi-
fying swappable rows has been identified. Interestingly, it appears that, beyond four,
any number of rows may be exchanged.

The hope was to, by investigating these swaps, enumerate a lower bound on the
number of sets of mutually nearly orthogonal latin squares, or a method of their devel-
opment. I would hope that the work presented here provides some avenues for progress
towards these aims. I have no doubt, however, that further investigation of mutually
nearly orthogonal latin squares would yield findings fruitful to the development of
experimental design and other yet-considered applications.
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