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Abstract

The problem of robot localisation involves determining the location of a robot
as well as the location of other objects within a world model. Soccer playing
robots must localise themselves and a ball on a soccer field in order to play soc-
cer effectively. Humanoid soccer competitions require the competing robots to
have humanoid head and vision restrictions. This gives the robot a limited field
of view, and presents the problem of head behaviour. Which objects will yield the
most information when viewed in a given field state? Motivated reinforcement
learning techniques were applied to solve the problem of making head behaviour
decisions. This paper outlines the mathematics involved with the reinforcement
learning techniques used, the motivation procedure implemented and the in-
volved value function approximation methods. The results of the application are
detailed in a paper which will be submitted to the 2013 RoboCup Symposium.

1 Robocup and The Head Behaviour Problem

Robocup is an annual international robotics competition with tasks spanning many
areas of robotics and artificial intelligence. Among these challenges are the robot
soccer leagues (Kitano et al., 1991). The KidSize Humanoid Soccer League is an open
platform humanoid soccer league where teams of up to three humanoid robots, with
heights between 30 cm and 60 cm, compete on a field of size 6 m by 4 m. The robots
must function autonomously while playing the game and all computations must be



performed on the robots’ computers. This involves the solution and coordination of
many complex computational tasks including computer vision, localisation, locomotion
and decision making or behaviour. Vision is responsible for processing image data and
producing measurements of objects. This information is then passed to localisation
and is incorporated into a world model. There are two types of objects which are
important for localisation: landmarks and objects. Landmarks, such as a goal-post,
have a known location in the world model and can be used to localise the robot in
the world model. Objects, such as the ball, must be localised in the world model by
measuring position relative to a localised robot. The world model maintained by the
robot is a probabilistic model, allowing uncertainty to be managed quantitatively for
each robot and object. Thus, successful localisation of the robots and field objects relies
on the vision system. Furthermore, the vision system relies on the behaviour of the
head; limited field of view implies that all objects cannot be measured at once. Thus
the head behaviour problem is that of choosing where to look, balancing landmarks
and objects, in order to minimise localisation uncertainty. Motivated reinforcement
learning techniques were applied to solve this problem.

2 Motivated Reinforcement Learning

Reinforcement learning is a type of machine learning used to solve problems involving
a series of decisions based on perceptions, with a metric indicating performance after
every decision (Sutton and Barto, 1998). The problem can be formulated as an inter-
action between a learning entity called the agent and its environment. The agent is the
decision maker and the environment is defined as anything which cannot be directly
altered by the agent. The agent measures the state of the environment and must decide
an action to take. After each action the agent receives feedback in the form of a reward
from the environment. The goal of the agent is to maximise the reward over many ac-
tions. This type of problem is called a Markov decision process, and is described fully
by: a state space S; a set of actions A and a function Λ : S → P (A) where Λ(s) is the
subset of actions available in state s ∈ S; a transition function T : S × A× S → [0, 1]
describing the probability of state transitions; and a reward function R : S×Λ(s)→ R.
Here P (A) is the power set of A, or the set of all subsets of A. It is common for an
additional simplification to include Λ(s) being finite and discrete for each s ∈ S. To
solve this problem the concepts of policies and value functions are often introduced.
A policy π : S ×A→ [0, 1] is a function which gives the probability of taking action a
from state s as π(s, a). Given a policy π, Qπ : S × A→ R denotes the value function



of the policy. The value of taking action a0 from state s0 defined by

Qπ(s0, a0) = E[
∞∑
i=0

γiR(si, ai)] (1)

where 0 < γ < 1 is called the reward discount factor and si is given by taking the
action ai−1 from state si−1, chosen according to π, for each i ≥ 2. Here E(χ) gives the
expectation value of the random variable χ. The optimal value function Q∗ is then
defined by

Q∗(s, a) = max
π
{Qπ(s, a)} (2)

Q-learning is a method of learning the optimal value function Q∗ and can be per-
formed as an online learning method. Actions are chosen from successive states to
explore the state-action space and learn the optimal value function. After each action,
a stored function Q : S × A → R is updated to approximate Q∗ using the following
update rule

Q(s, a)← Q(s, a) + α[R(s, a)−Q(s, a) + γ max
a′∈Λ(s′)

Q(s′, a′)] (3)

where s′ is given by the transition function T . It has been shown that this method
converges to the optimal value function Q∗ provided the agent explores all states and
each action from each state sufficiently (Sutton and Barto, 1998). Once Q∗ is learned,
the agent can make informed decisions given each state in an effort to maximise long
term reward by taking the action chosen according to

ai = argmaxa∈Λ(si){Q∗(si, a)} (4)

During learning, actions are chosen either on-policy or off-policy. Off-policy involves
choosing randomly between the possible actions with uniform probability. On-policy
involves choosing the action with the highest expected return given by Q(s, a). In
practice these methods are combined to balance exploiting known valuable actions
and exploring new actions. The ε-greedy method involves choosing off-policy actions
with probability ε and on-policy otherwise. Soft-max involves choosing action a from
state s with probability

ϕ(s, a) =
eQ(s,a)/σ∑

a∈Λ(s) e
Q(s,a)/σ

(5)

where the parameter σ ∈ R is called the temperature (Sutton and Barto, 1998). The
probability of selecting the highest value action increases with decreasing σ.



Motivated reinforcement learning is based on psychological motivation theory (Mer-
rick and Maher, 2009). An animal removed from environmental stimulation will tend to
seek out similar-but-different stimuli (Wundt, 1910). A motivated reinforcement learn-
ing agent uses internal methods to generate a reward to complement or replace the
environmental stimulus. To generate the motivation reward, the novelty is calculated
by comparing the current state and last action taken to all previous experiences. The
novelty N(s, a) is often calculated using methods such as a Habituated Self-Organising
Map (Saunders and Gero, 2001), which allows for the novelty to be calculated with-
out storing every past state and action. The method used to calculate novelty for
the head behaviour was model based. A model of the expected transition function
T ′ : S×A→ S was maintained in the form of a Fourier basis linear approximator (see
Section 3). After taking action a from state s, the novelty is calculated according to

N(s, a) = ‖T ′(s, a)− s′‖ (6)

where s′ is the state given by the transition function T . Afterward, the expected
transition function T ′ is updated to agree more closely with T . Thus, over time the
novelty is reduced when the agent takes an action from a given state repeatedly. This
closely reflects the idea of novelty being a measure of how well an agent understands
a system. The motivation reward is then calculated according the Wundt function

M(s, a) = M0 +
M1

(1 + e−ρ1(N−N1))
− M2

(1 + e−ρ2(N−N2))
(7)

where N = N(s, a) is the novelty of the action a taken from s ∈ S, and ρ1, ρ2, N1, N2,
M0,M1 and M2 are real parameters which define the function’s shape (Figure 1).

3 Approximating Continuous Value Functions

To store the functions Q and T ′ during learning, a Fourier Basis Linear Approximator
was used. The Fourier basis linear approximator approximates functions f : Rm → R
and is given by the cosine part of a truncated Fourier series, updated with a sampled
point update rule (Konidaris and Osentoski, 2008). For an approximator F : Rm → R
of order k ∈ N, the value of the approximation at x ∈ Rm is given by

F (x) = 〈w,
−→
φ (x)〉 =

∑
c∈X

wccos(
π

τ
〈c,x〉) (8)

where X ⊆ (Zk+1)m, w ∈ Rl for some l ∈ N and
−→
φ : Rm → Rl. We say φc(x) =

cos(π
τ
〈c,x〉) is the basis function corresponding to c ∈ X and wc ∈ R is the weight of
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Figure 1: An example of a Wundt function used to calculate the motivation reward from
the novelty. The corresponding parameters are N1 = 50, N2 = 200,M0 = −1,M1 =
1.5,M2 = 0.5 and ρ1 = ρ2 = 0.1.

the basis function corresponding to c ∈ X. Here, Zj denotes the set of integers modulo

j, thus X is a collection of m dimensional integral vectors.
−→
φ (x) is the vector of basis

functions; the ordering must simply match that of the weight vector w. τ ∈ R is half
of the largest period of the basis functions, which also equals the size of the largest
interval over which the approximator will converge, due to the periodicity of the cosine
function. A point-wise update rule for the approximator was derived using gradient
descent. If f : Rm → R is to be approximated by F , as above, then sampling f at
x ∈ Rm allows F to be updated according to

∆w = α
−→
φ (x)

‖
−→
φ (x)‖2

[f(x)− F (x)]

w← w + ∆w

(9)

where α ∈ [0, 1] is called the learning rate. This update rule uses the weight-gradient

of the error, ∇w[f(x) − F (x)] = −
−→
φ (x), to update the value of F (x) closer to f(x)

along the negative gradient vector in the weight-space. Observe the new value of the



approximator after the update is applied:

F ′(x) = 〈w + ∆w,
−→
φ (x)〉

= 〈w,
−→
φ (x)〉+ 〈∆w,

−→
φ (x)〉

= F (x) + α 〈
−→
φ (x),

−→
φ (x)〉

‖
−→
φ (x)‖2

[f(x)− F (x)]

= (1− α)F (x) + αf(x)

(10)

Note that α = 1 gives F ′(x) = f(x), as required. However, in practice multiple updates
with low α gives better convergence due to higher resolution sampling of the gradient
vector. To approximate a function g : Rm → Rn, n Fourier basis approximators are
used, one for each component of the output. This technique is essentially a method
for learning a truncated Fourier series expansion of a function.

4 Experimental Outline

A series of agents were trained to solve a reinforcement learning problem based on the
soccer field state and actions given by looking at certain objects on the field. Envi-
ronmental rewards were generated based on the localisation uncertainty of the world
model. An agent which combined the environmental reward with a motivation reward
performed the best at localising on the soccer field. A detailed report on the results is
planned for submission to the RoboCup Symposium 2013.
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