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My research project over the summer was entitled "Unsteady Free Surface Flows". 
Unsteady Free Surface Flows are a fundamentally important type of flow that exist 
everywhere throughout nature: from the motion of waves, to the motion of jets 
and even bubbles. As such, these flows are very relevant areas of research to 
applied mathematicians and, in particular, fluid dynamicists. 
 
 The particular problem that was addressed was that of horizontal sloshing. 
Put simply, this involves taking an incompressible, irrotational, invisicid fluid in a 
container, perturbing it, and finding out how the fluid-and in particular, the fluid 
surface-develops over time. The most contemporary example of horizontal 
sloshing would be the capsizing of the Costa Concordia off the coast of Tuscany, 
Italy. In this particular case, the movement of fluids under the deck, such as those 
in the partially filled fuel tanks, exacerbated the capsizing by reacting to the heave, 
pitch and roll of the cruise ship. 
 
 The goal of the project was to devise a simple numerical scheme which 
would solve the case of the aforementioned fluid in a 2D box given a small initial 
disturbance for the fluid that arose from a specified initial shape of the free surface 
on the top boundary of the fluid. Additionally, movable sides to the box and the 
effects of surface tension and capillary action were included. This was completed 
by using well known Fluid Dynamics theory to derive the equations, used to 
describe the fluid, from the 2D Euler equation, the hydrostatic pressure condition, 
the free surface condition and the incompressibility condition of the fluid. A 
linearized theory for small disturbances was considered but with the aim of 
generalizing it to the larger-amplitude case. However, as a group of partial 
differential equations, the resoluting nonlinear equations are too difficult to solve 
by hand in the general case, so they must be solved numerically. 
 
 Numerically setting up the problem involves not only the discretization of 
the domain-that is, breaking the continuous fluid domain into tiny grid points, but 
also the discretization of the aforementioned equations; using finite difference 
approximation schemes to approximate the partial derivatives in the equations, 



 

 

such that second order accuracy in space and first order accuracy in time are 
achieved. 
 
 Using the discretized form of the incompressibility condition, Laplace's 
Equation is solved numerically for the velocity potential in order to find that 
quantity at every point in the discretized fluid grid. Then, using this information, 
the discretized equations relating to fluid development over time are used to find 
the shape of the free surface and the velocity potential at the top of the fluid is 
found in the new time step. This two step process is then repeated multiple times 
to solve the horizontal sloshing problem. 
 
 To gauge the accuracy of the derived numerical solution, an exact solution 
for the simplest case of Laplace's Equation with zero Neumann conditions was 
subtracted from the numerical scheme with the same parameters. Upon 
inspection, the top of the fluid boundary exhibited wave like motion which was 
due to the differing periods of the oscillatory motion of the exact solution 
compared to the numerical solution. Further manipulating the magnitude of the 
time and space steps confirmed that the particular scheme derived had an error 
proportional to the time step and proportional to the space step squared; as 
expected, considering the finite difference approximation schemes used. 
 
 In summary, a numerical iterative scheme was devised for the problem of 
small-amplitude horizontal sloshing in a 2D box which was simple and, for 
reasonably valued parameters, quite stable. Additionally, the scheme provides a 
sturdy foundation to be built upon; it can be made more accurate, using boundary 
fitted coordinates and spectral methods and Chebyshev expansion, and it can be 
manipulated to take into account different container dimensions, even including a 
third dimension, and also including the fluid effects of viscosity, vorticity and 
compressability. 
 
 Overall, this project has been a very worthwhile and valuable experience 
which has given me key insight into the research process and a career in 
mathematics. There is no doubt that is has furthered my interest in mathematics 
and fluid dynamics and pursuing a career in academia. In short, it was an 
incredible opportunity. 
 
 Lastly, I would like to thank AMSI, CSIRO, and most importantly, my 
supervisor, Assoc. Prof. Michael Page, for making this opportunity possible. 
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