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Introduction
An exclusion process is characterized by lattice-based random walk models in which agents move
around and each site is occupied by at most one agent at a time (1,2). This report investigates
the modelling of cell motility mechanism based on a simple exclusion process on a one-dimensional
square lattice. In the derivation of partial differential equation models, independence of lattice site
occupancy has often been assumed. Here, this assumption is relaxed and the effect of correlation in
the occupancy of adjacent sites is considered. This effect is absent in the unbiased motility mech-
anism of a single cell species, as has been shown by Simpson and Baker (3). Instead, correlation
effects in the unbiased motility mechanism of multiple cell species are examined.

Method
Three different models were set up and results were compared. The first model is discrete with a
simulation focus on individual agent motility behaviour, and is used to generate density profiles.
The second continuum model is described by a partial differential equation which encapsulates the
behaviour of the entire cell population, based on the independence assumption. The third model is
presented as a system of ordinary differential equations incorporating first-degree occupancy corre-
lation.

1. Discrete Model

This model utilizes an agent-based motility rule called sequential updating method (4). At each
time step, N independent random choices of agents are made sequentially, with N being the number
of agents. An agent may be selected more than once, or not at all, but is selected once on average.
The chosen agent is allowed to move with probability P , the motility rate. The agent may exhibit
biased motility behaviour, such that it moves towards that direction with probability (1 + a)/K,
where −1 ≤ a ≤ 1 represents the bias, and K denotes the total number of neighbours. The system
is unbiased if a is equal to 0. Movement is aborted if the target site is found to be occupied.

Simulation is performed on a 2-dimensional square lattice of size 200 × 30. Reflecting bound-
ary conditions are imposed on the horizontal boundaries x = 1 and x = 100, and periodic boundary
conditions are imposed on the vertical boundaries y = 1 and y = 30. Occupancy rates are column-



averaged over 300 realizations to obtain a one-dimensional empirical estimate of cell density:
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2. Continuum Model

A conservation equation at site s is developed as follows:
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where s� is a neighbour of s, P (a) denotes motility rate, K is the number of neighbours of s, Os is
the event that site s is occupied, and Vs is the event that site s is vacant. The first term represents
the probability of an agent transitioning into the current site - if a particular neighbour is occu-
pied, then the agent has P (a)/K probability of moving into the current site - and the second term
represents the probability of transitioning out.

To derive a continuum model, the independence assumption and the law of total probability are

invoked, so that p(O(a)
s� , Vs) = C

(a)
s� (1 − Cs). Then, the terms involving C and C(a) on the right

hand side are approximated by their Taylor series expansion about s, where the distance between
s and a neighbouring site s is ||s� − s|| = ∆. The whole equation is then divided by τ , where
τ = tk+1 − tk represents the size of a time step. We take the limit as ∆ and τ tend to 0 whilst
holding ∆2/τ constant (5). Under the same set of boundary conditions as specified for the discrete
model, the resulting model reduces to the following one-dimensional partial differential equation
(for two species) since no structure is imposed on the vertical dimension:
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is the diffusion constant.

3. ODE Model

The conservation equation for C(a)
s is exactly the same as (2). Without the independence assump-

tion, evolution equations for the pair probability functions are derived based on the same principles
as the conservation equation. In order to truncate the system, the Kirkwood Superposition Ap-
proximation approach (3) is used to express joint probability functions of three sites as a product of
pair probability functions. Furthermore, correlation between the occupancies of non-adjacent pair
sites is assumed to be negligible in order to reduce the number of evolution equations used.

The Kirkwood Superposition Approximation is given by:

p(Ox, Oy, Oz) =
p(Ox, Oy)p(Ox, Oz)p(Oy, Oz)

p(Ox)p(Oy)p(Oz)
. (4)



Under the same set of boundary conditions, three ordinary differential equations are derived for
each species of cell at every site s:
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where P denotes the motility rate of the entire population, obtained as a weighted average of the
motility rates of all species.

Results
In the simulation, the initial condition is such that the sites where 81 ≤ x ≤ 100 are fully occupied
by species A, and the sites where 101 ≤ x ≤ 120 are fully occupied by species B.

Discussion
In both cases, the three models produce almost identical results up to t = 100. This may be because
the centre region has high densities, which allow for fewer cell movements, and hence is subject to
less effect from correlation. Densities in outer regions are low, and correlation effects are weaker.
But as cells propagate outwards and densities in the centre sites decrease, more movements are
allowed and correlation effects begin to assume significance. As the system evolves through time,
the aggregated correlation effect is stronger. At t = 1000, the ODE model clearly provides a better
match to the discrete simulation results. The match is more accurate for both species if they have
the same motility rate. When motility rates differ, the solution is almost exact for the less motile
species, but less precise for the other.

Since the ODE solution does not provide an exact match, it is clear that correlation between
the occupancies of non-adjacent sites, though weaker, exists. The discrepancy is most prominent at
the peaks, suggesting that correlation effects are greater in high-density regions. Greater precision
will be achieved if higher degree correlation was incorporated, but would at the same time produce
a much more complicated ODE system comprised of considerably more equations.



Figure 1: Left: P (a)
= 0.75, P (b)

= 1. The state of the system at t = 100 and t = 1000 are shown along

with the initial condition. The horizontal axis denotes the sites x, and the vertical axis denotes cell density

at each site. The discrete simulation results are displayed in black, PDE model in blue and ODE model in

red. Right: P (a)
= 1, P (b)

= 1. The state of the system at t = 100 and t = 1000 is shown along with the

initial condition. Discrete results are displayed in black, PDE model in blue and ODE model in red.

A challenge that still remains is that the ODE system encounters numerical errors if the differ-
ence between the cell motilities were too great or if the system had run for a longer time span, such
that Matlab’s stiff ODE solvers would encounter matrices that are close to being singular. This
results in solutions that either diverge at the peaks or turn negative at certain locations.
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