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Let G be an abstract graph. A thrackle drawing T (G) is a drawing of G where
every pair of edges in G either meet at an endpoint or properly cross exactly once. A
spherical thrackle drawing ST (G) is a thrackle drawing of G on the unit sphere where
the edges of G are represented by arcs of great circles.

The class of spherical thrackle drawings is a natural spherical analog of straight-line
thrackles drawn on the plane. Despite the similarity, the graphs which can be drawn
as spherical thrackles form a larger class than those which can be drawn as straight-
line thrackles. Clearly, by central projection, every graph that can be drawn as a
straight-line thrackle can also be drawn as a spherical thrackle, but the converse is not
true. By the results of Woodall [1], the only cycles which can be drawn as straight-line
thrackles are the odd cycles. In comparison, all even cycles other than the 4-cycle can
be drawn as spherical thrackles; that is, every cycle that has a general thrackle drawing
also has a spherical thrackle drawing. Using an adaptation of Woodall’s edge-insertion
procedure for spherical thrackles [1], we can obtain from the 6-cycle drawing the rest
of the even cycle drawings, as demonstrated in Figure 1.
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Figure 1: Spherical thrackle drawings of a 6-cycle (left) and an 8-cycle (right).

While our main goal is to prove that the thrackle conjecture holds for spherical
thrackles, we begin by proving some results relating to spherical thrackle drawings of
cycles, which will assist us in the proof of the main conjecture. First, we require some
definitions.

We define the crossing orientation of any two directed edges e, f in a similar manner
to the vector cross product. To demonstrate this, in Figure 2 we have χ(e3, e1) = 1,
while χ(e2, e4) = −1. A similar definition applies for intersections at endpoints; in
Figure 2 we have χ(e1, e2) = 1. Note that in general we have χ(e, f) = −χ(f, e).
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Figure 2: A directed 4-path.



A (directed) k-path p = e1 . . . ek is called good if either χ(ei−1, ei) = 1 for each
i = 2, . . . , k or χ(ei−1, ei) = −1 for each i = 2, . . . , k, and is called bad otherwise.
Similarly, a k-cycle ck is called good if every directed path in ck is good, and is called
bad otherwise. The path shown in Figure 2 is good.

A long edge is an edge whose length is greater than π, while a short edge is an edge
whose length is less than π.

For any edge e, denote by C(e) the great circle containing e.
We do not consider cases where two edges lie on the same great circle, so the

crossing orientation is well-defined. We also do not consider cases of medium edges, so
every edge is either long or short. There is a theorem which allows us to ignore these
cases, which we omit.

The Cycle Theorem. Every spherical thrackle drawing of an n-cycle is good for
n ≥ 5. Moreover, if n is even, its spherical thrackle drawing contains at least one long
edge.

Proof. Let cn be an n-cycle for some n ≥ 5. Assume for convenience of notation
that ek = ek+n, and choose the direction on cn in order of increasing edge index.

Suppose cn is bad. We can assume without loss of generality that there are three
adjacent edges ej−1, ej, ej−1 such that χ(ej−1, ej) = 1 and χ(ej, ej+1) = −1. Then ej
is short; otherwise, ej−1 and ej+1 will be forced to lie in the same hemisphere bounded
by C(ej) in order to intersect, forcing χ(ej−1, ej) = χ(ej, ej+1). We must also have at
least one of ej−1 and ej+1 long, or else they will have no points in common. We assume
ej−1 and ej+1 do not have a common endpoint, since this produces a 3-cycle.

ej−1

ej ej+1

Figure 3: A bad 3-path.



Up to relabelling and direction change, we have the structure shown in Figure 3,
with ej+1 possibly long. We see the edge incident to ej−1 at its starting point must
meet ej and ej+1 at their common endpoint in order to intersect them both, and this
produces a 3-cycle, which is a contradiction. Hence, cn is good.

Now, let c2n = e1 . . .e2n be a 2n-cycle for some n ≥ 3, directed in order of increasing
edge index. Suppose that all edges in c2n are short. Denote by H the hemisphere
bounded by C(e1) and containing the ending point of e2. As c2n is good, the starting
point of e2n is also in H. As e3 is short and begins in H, it ends in the other hemisphere
−H (since it must cross e1 and hence C(e1)). By similar argument, we see that each
even-numbered edge (other than e2n) ends in H, while each odd-numbered edge (other
than e1) ends in −H. But e2n−1 must end in H in order to meet the starting point of
e2n, so we have a contradiction. Hence, c2n contains a long edge. �

We now state the following theorem which we will work towards proving.

The Thrackle Conjecture for Spherical Thrackles. Let G be an abstract
graph with n vertices and m edges. If G admits a spherical thrackle drawing ST (G),
then n ≥ m.

As is usual in attempting to prove the Thrackle Conjecture, we assume any thrack-
leable graph G is connected and has no terminal edges, since the existence of any
counterexample implies the existence of a counterexample which is connected and has
no terminal edges. From the proof of the Cycle Theorem, we observe that, in the
context of spherical thrackles, bad paths inevitably produce bad 3-cycles as long as
there are no terminal edges. Since we are assuming any counterexample has no termi-
nal edges, this will assist us greatly in proving the conjecture, particularly since it is
known that thrackles in general cannot contain more than one 3-cycle [2].

When dealing with thrackles in general as opposed to cycles, we will need to consider
vertices with degree other than 2 (i.e. greater than 2 since by assumption there are
no terminal edges). Here, a useful notion is that of edge separation. Let v be a vertex
and let e be an edge incident to v. For the purpose of illustration, suppose any other
edges incident to v are directed away from v. We say e separates at v iff there are two
edges incident to v other than e which start in opposite hemispheres bounded by C(e).
This is illustrated in Figure 4. If it is understood which vertex is being referred to, or
it is irrelevant, we simply say e separates.
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Figure 4: The edge e separates at v.

We have seen that bad paths and medium edges both produce 3-cycles. In partic-
ular, the middle edge of a bad 3-path is an edge of a bad 3-cycle. We now explore yet
another way of producing bad 3-cycles.

The Separation Lemma. Let G be a connected graph with no terminal edges.
Then any edge in ST (G) which separates is short and is an edge of a bad 3-cycle.

Proof. Let e, f , g be edges in ST (G) which meet at a common vertex v. Assume
that g separates at v. Direct e, f towards v and g away from v, and assume without
loss of generality that χ(e, g) = 1 and χ(f, g) = −1. Since G has no terminal edges,
there is some edge h incident to g at its other endpoint. We have either χ(g, h) = 1
or χ(g, h) = −1. If χ(g, h) = 1, then fgh is a bad 3-path, and if χ(g, h) = −1, then
egh is a bad 3-path, so in either case g is the middle edge of a bad 3-path. The middle
edge of a bad 3-path is always short, and a bad 3-path produces a bad 3-cycle with
the middle edge as one of its sides, so the result follows. �

The Vertex Lemma. Let G be a connected graph with no terminal edges. If
deg(v) ≥ 3, then there exists a great circle C passing through v such that the starting
segments of all of the edges incident to v lie in the same hemisphere bounded by C.

Proof. If no such circle C exists, then all of the edges must separate; since there are
at least three of them, this gives at least two different 3-cycles, which is a contradiction.

�



Corollary. Let G be a connected graph with no terminal edges. Then deg(v) ≤ 4
for any vertex v in G. Moreover, if deg(v) = 3, 4, then v is a vertex of a bad 3-cycle.

This corollary is an easy consequence of the Vertex Lemma. If we have at least
5 edges starting in the same hemisphere, then there are at least three separating
edges; this gives at least two different 3-cycles by the Separation Lemma, which is a
contradiction. Hence, deg(v) ≤ 4 for any vertex v. If deg(v) = 3, 4, we have at least
one separating edge, which must be a side of a bad 3-cycle by the Separation Lemma,
so v is a vertex of a bad 3-cycle.

We omit the proof of the next lemma.

The Good Path Lemma. Let e0e1e2 . . . em−1emem+1 be a simple good path with
e1, em long and all other edges short. Then m is odd.

Now, we restate and prove the following theorem.

The Thrackle Conjecture for Spherical Thrackles. Let G be an abstract
graph with n vertices and m edges. If G admits a spherical thrackle drawing ST (G),
then n ≥ m.

Proof. As usual, we assume G is connected and has no terminal edges. Suppose,
by way of contradiction, that G has more edges than vertices and that ST (G) exists.

We prove this theorem in two parts. We first prove that the existence of some
ST (G) with more edges than vertices implies the existence of some ST (H) which is
the drawing of an 8-graph; i.e. H consists of two cycles which share a vertex. In
particular, H consists of an even cycle and a bad 3-cycle, with the vertex of degree 4
opposite the long edge of the bad 3-cycle. We then prove that no such graph can be
drawn as a spherical thrackle.

If G has more edges than vertices, then there must be some vertex in G with degree
greater than 2. By the corollary of the Vertex Lemma, any such vertex is the vertex
of a bad 3-cycle c3 which must therefore be contained in G. Since G can contain at
most one bad 3-cycle, only the vertices of c3 can have degree greater than 2.

Let c3 = ABC, with A opposite to the unique long edge BC. Let H be the
hemisphere bounded by C(BC) containing A. We consider the three possible cases
(up to symmetry): (1) deg(B) > 2 and deg(C) > 2; (2) deg(B) > 2 and deg(C) = 2;
and (3) deg(B) = 2 and deg(C) = 2.



Case (1): deg(B) > 2 and deg(C) > 2. If deg(B) > 2, then there is some edge BD
incident to B with D 6= A,C. Since BC is long, BD is short, so D ∈ H since BD must
cross AC. BD does not separate, or it produces another bad 3-cycle. If there is some
other edge BD′ incident to B with D′ 6= A,C,D, then one of BD, BD′ would separate,
giving another bad 3-cycle. Hence deg(B) = 3. By symmetry, deg(C) = 3, with some
short edge CE incident to C with E ∈ H. We must then have deg(A) = 2, since if
there were some edge AF incident to A with F 6= B,C then AF cannot separate AB,
AC, or it produces another bad 3-cycle, and this implies that AF has no points in
common with one of BD, CE.

We come to the drawing on the left in Figure 5, from which we can obtain the
structure shown on the right in Figure 5 by edge insertion. Since all other vertices have
degree 2, we have a cycle sharing the vertex A with a 3-cycle. Since the intersection
of the two cycles is a touching intersection, the other cycle must be even by [3].
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Figure 5: The thrackle drawing on the right is obtained from the drawing on the left.

Case (2): deg(B) > 2 and deg(C) = 2. As in case (1), deg(B) = 3, with some
short edge BD incident to B crossing AC. Since deg(C) = 2, and all vertices other
than the vertices of c3 have degree 2, we must have deg(A) odd so that the degree sum
of G is even (which is true of any graph). Hence, deg(A) = 3, since this is the only
possible odd degree. The remaining edge AF (with F 6= B,C) incident to A must
intersect BD and BC, and cannot separate AB, AC, so we get the drawing on the left
in Figure 6. By edge insertion, we again obtain an 8-graph consisting of an even cycle
and a 3-cycle.
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Figure 6: The thrackle drawing on the right is obtained from the drawing on the left.

Case (3): deg(B) = 2 and deg(C) = 2. Since A is the only vertex with degree
greater than 2, and the degree sum must be even, we have deg(A) = 4. The other two
edges AF , AF ′ must both cross BC, and since neither of them can separate at A, we
get (without loss of generality) the structure shown in Figure 7. We again have an
even cycle sharing a vertex with a 3-cycle. This completes the first part of the proof;
in each case we have obtained an 8-graph H consisting of an even cycle and a 3-cycle,
with the vertex of degree 4 opposite the long edge of the bad 3-cycle.
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Figure 7: Case (3) gives another 8-graph.



Now we show that such a graph cannot be drawn in this way. Retain the labelling
of the bad 3-cycle with vertices A, B, C, with A opposite the long edge BC. Let
c2n = e1 . . . e2n be the even cycle. Place the direction on c2n in order of increasing edge
index, and without loss of generality, assume that χ(ei−1, ei) = 1 for each i = 2, . . . , 2n,
and χ(e2n, e1) = 1 (we know c2n is good from the Cycle Theorem). By swapping the
labels of B and C if necessary, assume also that χ(AB,BC) = χ(BC,CA) = 1. We
then get the drawing in Figure 8.
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Figure 8: An 8-graph consisting of an even cycle and a 3-cycle.

From Figure 8, we have χ(e2n, AB) = χ(CA, e1) = 1.
Now, by the Cycle Theorem, c2n contains at least one long edge. Let ek and e` be

the first and last edges in c2n, respectively, so ` ≥ k.
The path ABCAe1 . . . ek−1ekek+1 is good and can be made simple by disconnecting

the edges AB and e2n from A. If ek = e2n, we can insert a new edge at the end of
e2n close to AB. Hence, by the Good Path Lemma, k is odd. Similarly, the path
e`−1e`e`+1 . . . e2nABCA can be modified to satisfy the assumption of the Good Path
Lemma, so ` is even. Since ek and e` are both long, they are not adjacent, and since
k and ` have opposite parity, we have `− k ≥ 3.

Finally, consider the path e`−1e`e`+1 . . . e2ne1 . . . ek−1ekek+1. Since ` − k ≥ 3, the
path could possibly be a cycle, but can be made simple by disconnecting ek+1 and e`−1.
By the Good Path Lemma ` − k is even, which is a contradiction, as k and ` have
opposite parity. This completes the proof. �
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