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This project focuses on the research question ‘What are the percolation properties of
contact networks that are spatial but also have a strongly overdispersed degree
distribution?’ It involved modifying existing code in the programming language R to
produce algorithms for networks that combine geographical constraints on
connections with individual heterogeneity in how often such connections occur. The
percolation properties of the resulting networks are of interest because long range
connectivity in such networks corresponds to the possibility of disease outbreaks;
where the contacts in the network are of the type that allows transmission of the
infectious agent. Part of this project also focused on having a look at how a real wildlife
contact network compares to the random networks produced in addressing the
research question above.

Knowledge of the structure of human and animal contact networks is of vital
importance in terms of studying the spread of infectious diseases. The structure tells
us whether the disease is likely to spread, how much of the population will be affected
and what effort is required to stop an outbreak. A recent example of why contact
networks are important is the Tasmanian devil and the facial tumour disease. Note
here that the Tasmanian devil is just a motivating example; the above research
qguestion which | will be addressing is more theoretical and general. The Tasmanian
devil is the world’s largest surviving carnivorous marsupial. In 2008 the Tasmanian
devils’ status was upgraded to endangered species due to its vulnerability to the facial
tumour disease. Devil facial tumour disease is a fatal condition in Tasmanian devils
which is characterised by the appearance of facial cancers. The tumours or cancers are
first noticed in and around the mouth as small lesions or lumps. These develop into
large tumours around the face and neck and sometimes even in other parts of the
body. Devil facial tumour disease is very unusual as it is one of only three recorded
cancers that can spread like a contagious disease. The cancer is passed from devil to
devil through biting. Due to the lack of genetic diversity among the Tasmanian devils
the tumour cells aren’t rejected by their immune system thus causing the disease to
spread.!

L http://www.dpiw.tas.gov.au/inter.nsf/WebPages/LBUN-5QF86G
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In February 2010, the devil facial tumour disease was detected across more than 60%
of Tasmania. So, is the devil population well connected? And does it percolate? Before
we can answer these questions we need to define a few terms and properties that are
important when looking at the topology of a network. The square lattice is an example
of a network which is composed of individual nodes or vertices. A bond, or edge, is a
connection between any two vertices. A cluster is a group of vertices connected by
bonds. The degree of a vertex is the number of connections or edges it has. If a
network is well connected then we say that it percolates. Note that contact networks
can be of different types. It depends on the type of contact that a disease uses to
transmit. It can be direct contact (such as biting) or indirect contact (such as flu which
transmits via the environment). With respect to direct contacts, the Tasmanian devil
population appears to be well connected and thus we can say that it percolates.

If we randomly generate bonds between vertices to form a random network, then
each bond has a probability, p, of existing. The higher the probability, p, the more
likely it is that the network has an infinite cluster. An infinite cluster, or large
component, is a cluster which spans the network. There is a critical point, p=pc, at
which below this point an infinite cluster does not exist. Above this point an infinite
cluster always exists, and the chance that an arbitrary node belongs to it increases.
This critical point is known as the percolation threshold. If p>pc the network is well
connected and thus percolates. If p<pc the network is not well connected and does not
percolate. On the square lattice the percolation threshold is 0.5.

What happens when contact networks are spatial and have high individual variation?
Note here that these are opposing ideas, when a network is spatial the likelihood of a
disease spreading is low — spatial networks require lots of “little hops” to get
anywhere; when individual variation in degree is high this creates “hubs” in the
network, or superspreaders, and the likelihood of a disease spreading is higher. Using
the programming language R | produced algorithms for networks that combine
geographical constraints on connections with individual heterogeneity in how often
such connections occur. This was achieved by randomly assigning each vertex a
coordinate in space and then allocating each of these vertices a random ‘fitness’, xi.
The fitness of a vertex represents the socialability (willingness to be social) of each
individual, for example in the Tasmanian Devil population two dominant males might
be more likely to come into contact with each other than, say, two shy males.

To develop a plausible model for the contact rates of pairs of individuals we started
with a purely geographical model
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Where sij is the Euclidean distance between node i and node j and lambda is a scaling
parameter. However, with this model, the average contact rate varies with lambda. To

compare the behaviour of the networks it is convenient to have the average contact
rate constant. Therefore we multiplied the above model by lambda squared to form
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Now, it can be shown that the average contact rate of individuals is independent of
lambda.

The heterogeneity of individuals is also important when determining which individuals
have contact with other individuals. For this reason, we want to form a model that
includes the purely geographical model, but also takes into account the heterogeneity
of individuals to see if it produces plausible networks
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We chose to multiply the ‘fitness’ of node i and node j in this model so that the
probability of node i been connected to node j is equally weighted. That is both the

sociableness of node i and node j are of equal importance when determining whether
or not they come into contact with each other.

i. How does changing lambda affect the network?
We took a small range of lambda values to see how these random networks behaved
when the scaling parameter lambda was changing and everything else was kept
constant. We found that for this particular contact rate, as lambda increases the
network became more spatial.

ii. How does varying lambda change the percolation threshold?
Using the same three values of lambda as before, we had a look at how the
percolation threshold behaved. As the value of lambda increased, it appeared that so
did the percolation threshold for these random networks being generated. See figure 1
in the Appendix.

iii. How does changing the individual variation affect the network?
We took a small range of values for the variance of the individual fitness’s to see how
these random networks behaved when the individual variation was changing and
everything else was kept constant. As the individual variation was increased, it
appeared that the networks had an increasing number of isolated vertices and
superspreaders.

iv. What effect does variation have on the percolation threshold?

Using the same range of values for the individual variation as before, we had a look at
how the percolation threshold behaved. We found that for each of the values of
lambda used previously, the variance had different effects. For smaller lambda values
of 0.5 and 1, as the variation increased the percolation threshold was pushed closer to
zero. However, for the larger lambda value of 2, as the variation increased there was
no clear effect on the percolation threshold. Also, for all lambda values used
previously as the variation increased the probability that an arbitrary vertex would
belong to an infinite cluster decreased. See figures 2 and 3 in the Appendix.

In most networks high individual variation in contact rate translates into networks
having a few, highly connected individuals. In epidemiology, such individuals are
sometimes referred to as superspreaders. In human contact networks superspreaders
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often have a significant influence on the spread of disease. This is the case for sexually
transmitted diseases such as HIV where control is made more difficult by
superspreaders.

However, from the above results, for our spatial networks and our “fitness” model that
generates individual heterogeneity, it is possible that the influence of superspreaders
on the spread of disease is less significant the higher the value of lambda. One
possibility is this is because for strongly spatial networks the superspreaders may tend
to be isolated from the majority of the network, despite being superspreaders. Thus
their effect on the spread of disease — which is usually to accelerate spread and
increase the chances of an outbreak — would be local rather than felt throughout the
entire network.

The second part of this project was to address the question of how do random
networks compare to real wildlife networks? For this part of the project we used data
previously collected for Voles. A Vole is a small rodent resembling a field mouse. The
Vole data was collected by setting one hundred traps up in a 100m by 100m grid on
different sites. Each Vole was given a unique ID number; this number was recorded
every time a Vole was trapped. The Voles were said to have contact with other Voles if
they were caught in the same trap on the same site.

Using the programming language R | created code to extract the relevant information
from excel files. This information included Vole ID numbers, the number of times each
Vole was caught and the specific traps they were caught in. Each Vole was then given
an x and y coordinate to represent their coordinate in space; these coordinates were
determined by the traps each Vole was caught in. Edges were then drawn between
two Voles, or vertices, if they had a trap in common. Once the Vole contact network
had been set up, code was added to compute the lengths of all the edges within the
network so that an edge length distribution histogram could be produced. Similarly,
we also computed the individual node degrees (or counted the number of connects,
edges, that each Vole had in the network) in the network and produced a degree
distribution.

Using the same spatial point pattern as for the Vole data, we then modified the way
that edges were drawn between two vertices. Instead of using the information about
the Voles to draw edges between vertices we randomly assigned each edge to two
vertices. We then compared the degree distribution and the edge length distribution
of the edges determined using the Vole data and of randomly assigned edges.

It is important to note that we can only visually compare the Vole and the random
networks at this stage without performing further statistical inferences. This is merely
the preliminary stages of analysing the contact network of voles. By visual comparison
the random network and the Vole network have significant differences in structure
(figure 4 in Appendix). We can also see this by comparing the degree distribution and
the edge length distribution of both networks (figures 5 and 6 in Appendix). As the
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variance of the degree of the Vole’s model is significantly higher than the mean, this
suggests that there is a significant amount of individual heterogeneity between the
individual Voles. That is, some Voles are very highly connected or social while others
only have a few connections or are perhaps shy individuals. The mean edge lengths
also suggest that in the vole data network they form connections with other voles that
are closer to them than in the random network. It appears that, based only on the
small amount of research we have done, the vole network is both spatial and has an
overdispersed degree distribution.

| wish to thank my supervisor Dr Stephen Davis for all his guidance and support as
without which this project would not have been possible. | would also like to thank
AMSI for their generous support which allowed me to undertake this project and gain
invaluable research experience. Lastly | would like to thank the CSIRO for hosting the
Big Day In as this was a fantastic event which | have benefited greatly from.
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Appendix
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Figure 1. Effect of varying lambda on the percolation threshold. Lambda = 0.5, 1 and 2 are the blue,
green and red curves respectively. The y-axis is the proportion of vertices in the infinite cluster and the
x-axis is the proportion of edges not deleted from the original network generated.

Postal Address: 111 Barry Street Email: enquiries@amsi.org.au
¢/- The University of Melbourne Phone: /+61 3 83441777
Victoria 3010 Australia Fax: +61 3 9349 4106

Web:  www.amsi.orq.au



Differing Variancesfor A=1
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Figure 2. Effect of changing the variance on the percolation threshold. Lambda = 1 for Variances of 0.5,
1, 2 and 4 are the pink, red, green and blue curves respectively. The y-axis is the proportion of vertices in
the infinite cluster and the x-axis is the proportion of edges not deleted from the original network

generated.

Differing Variances for A=2
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Figure 3. Effect of changing the variance on the percolation threshold. Lambda = 2 for Variances of 0.5,
1, 2 and 4 are the pink, red, green and blue curves respectively. The y-axis is the proportion of vertices in
the infinite cluster and the x-axis is the proportion of edges not deleted from the original network

generated.
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Figure 5. Degree distributions of the Random network and the Voles network respectively.
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Figure 6: Edge length distributions of the Random network and the Voles network respectively.
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