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Abstract. This paper examines ternary algebras, their practical applications

and how to translate between the natural dual and the restricted Priestley dual
of these algebras. We begin by determining the term functions of the standard

ternary algebra as an application of the Baker-Pixley Theorem. This is fol-

lowed by an overview of some of the practical applications of ternary algebras.
We establish the ability to transform both the natural dual of an arbitrary

ternary algebra into its restricted Priestley dual, and the restricted Priestley

dual of an arbitrary ternary algebra into its natural dual. The translation
process is formalized and two applications are demonstrated. This discovery

is prefaced by using existing natural dualities theory to establish an optimal

natural duality and the restricted Priestley duality of ternary algebras.

1. Overview

This report aims to encompass the objectives described in the initial project
description. These outcomes are:

• produce an overview of the many applications of ternary algebras,
• apply the theory of natural dualities to study ternary algebras,
• investigate the extent to which restricted Priestley duality and natural du-

ality can be used in tandem.

Almost all the results in this report are presented without proof. The author and
her supervisor will eventually write up all the proofs for publication.

2. Introduction

In classical propositional logic every proposition is either true or false. That is,
classical logic has exactly two truth-values. The algebraic counterpart of classical
logic is Boolean algebra. On the other hand, any form of logic that allows for more
than two truth-values belongs to the realm of non-classical logic. Examples of
algebras arising from non-classical logic are Kleene algebras and ternary algebras.

The standard Boolean algebra is given by

2 = 〈{0, 1};∨,∧,¬, 0, 1〉.

∨ 0 1
0 0 1
1 1 1

∧ 0 1
0 0 0
1 0 1

¬
0 1
1 0

Figure 1. The operations of 2
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The standard Kleene algebra is given by

K = 〈{0, d, 1};∨,∧,¬, 0, 1〉,
and the standard ternary algebra is given by

3 = 〈{0, d, 1};∨,∧,¬, 0, d, 1〉.

∨ 0 d 1
0 0 d 1
d d d 1
1 1 1 1

∧ 0 d 1
0 0 0 0
d 0 d d
1 0 d 1

¬
0 1
d d
1 0

Figure 2. The operations of K and 3

A comparison of 2 with K reveals that 2 satisfies the Law of the Excluded Middle

p ∨ ¬p ≡ 1

while K fails this law as d ∨ ¬d = d. The only difference between the standard
Kleene algebra K and the standard ternary algebra 3 is that d is included in the
type of 3 as a nullary operation.

We conclude this section with some definitions.

Definition 2.1. A term is a “meaningful” expression built from

• operation symbols: ∨,∧,¬, 0, d, 1,
• variable symbols: x1, x2, x3, . . . ,
• delimiters: (, ), . . . .

For example, ((x1 ∨ x2) ∧ (¬(x1 ∨ x2))) ∨ d is a binary term while ¬x1))∧ is not
a “meaningful”expression. A Boolean term refers to a term that does not involve
the operation symbol d.

Every term yields a corresponding term function on 3 and every Boolean term
yields a corresponding term function on both 2 and 3. For example, the binary
Boolean term ¬(x ∨ y) ∧ ¬x yields the term functions on 2 and 3 represented as
2-valued and 3-valued truth tables in Figure 3.

p q ¬(x ∨ y) ∧ ¬x
0 0 1
0 1 0
1 0 0
1 1 0

p q ¬(x ∨ y) ∧ ¬x
0 0 1
0 d d
0 1 0
d 0 d
d d d
d 1 0
1 0 0
1 d 0
1 1 0

Figure 3. f : 22 → 2 and g : 32 → 3

The term functions on 3 corresponding to Boolean terms play an important role
in applications and are referred to as B-term functions. The term function g in
Figure 3 is an example of a B-term function of 3.
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Term functions are used in the analysis of circuits. Terms and term functions are
relevant tools in several fields including electrical engineering and computer science.

3. Some applications of ternary algebras

We consider some of the applications of ternary algebras. However, the reader
should be aware that the author did not possess the necessary expertise in elec-
tronics to understand the intricacies of these applications.

Ternary algebras were initially applied by Goto in 1949 to analyze the indefinite
behaviours of relay circuits as well as to synthesize such circuits [12, 13]. Other
pioneers to apply ternary algebras include Moisil and Roginskii. See references 17,
18 and 30 in [4].

Since then the potential of ternary algebras has been further recognized. In
particular, ternary algebras may be applicable to a circuit containing ambiguity
either at the input stage or the output stage. For example, Muller used ternary
algebras to study transient phenomena in switching circuits [17]. While Mukaidono
demonstrated that ternary algebras can be used to design fail-safe logic circuits by
letting d correspond to a failure state [16]. Mukaidono also showed that ternary
algebras can correct input failures [15, 16]. He motivates the correction of input
failures by highlighting that a fail-safe logic circuit capable of self-correcting as
many input failures as possible during normal operation will have the advantages
of improved safety and reliability and a decreasing of inactive states. In the case of
CMOS circuits, an ambiguous output is represented by the value d [4].

Let us consider a specific example of an application of ternary algebras. It was
shown by Yoeli and Rinon that ternary algebras could be utilized to detect static
hazards in combinational switching circuits [19]. In particular they use B-term
functions of 3. The use of B-term functions is justified as the overall performance
(including transient behaviour) of a binary electronic combinational switching cir-
cuit composed of AND-, OR- and NOT-logic circuits will be adequately described
by the corresponding B-term function [19].

To detect whether a circuit contains a static hazard we simply need to find the
corresponding Boolean term, denote all changing inputs by d and determine the
resulting value of the B-term function. A circuit containing a hazard will have the
output value d [4].

Mukaidono went one step further and demonstrated that various kinds of static
hazards contained in combinational switching circuits can be detected and iden-
tified by B-term functions [14]. In particular, he derived a method which could
algebraically detect all logic hazards contained in the circuits. Mukaidono also
pointed out that there were some dynamic hazards which were detectable by B-
term functions.

Traditionally, asynchronous circuits have been viewed as difficult to understand
and design [5]. Hence many of the digital circuits in use today are synchronous.
However, asynchronous circuits have the potential benefits of increased speed and
reduced power consumption. In addition to these advantages, the development
of several asynchronous design methodologies has made the design of much larger
and more complex circuits possible. This is one of the limitations of synchronous
circuits; building large complex circuits as synchronous circuits can be challenging.
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An important tool used to detect potential timing errors in asynchronous circuits
is based on ternary algebras [3, 4, 6]. This tool is known as ternary simulation and
was introduced by Eichelberger [11]. The advantages to ternary simulation are:

• unlike binary analysis algorithms which are exponential in the number of
state variables, ternary simulation is linear in the number of state vari-
ables [4],
• ternary simulation provides information that even the most accurate circuit

simulator cannot [3],
• ternary simulation requires only slightly more computational effort than or-

dinary logic simulation and hence can be used to check large digital systems
operating over long input sequences [3].

Bryant applied ternary simulation to a variety of circuits designed in both nMOS
and CMOS [3].

Finally, in addition to the above applications of ternary algebras an example of
an application outside the realm of electronics and circuit design is the 3-valued at-
tribute exploration created by Burmeister [7]. A more recent application of ternary
algebras was by Negeulescu to a framework for modelling interactive systems known
as process spaces [4, 18].

4. The term functions of 3

We can find the term functions of 3 by applying the following theorem from
Baker and Pixley [1] (see also [8]).

We begin with the concept of a lattice-based finite algebra.

Definition 4.1. A finite algebra 〈M ;F 〉 is lattice-based if there exist binary oper-
ations ∨, ∧ ∈ F such that 〈M ;∨,∧〉 is a lattice.

Theorem 4.2. If L is any lattice-based finite algebra, then f : Ln → L is a term
function of L if and only if f preserves every binary relation r on L such that r is
a subalgebra of L2.

We will apply this theorem to find the term functions of 3.

11

1d

10

d0

00

d1

01

0d

dd

Figure 4. 32

The algebra 32 is shown in Figure 4, and the five subalgebras of 32 are shown in
Figure 5. Thus by Theorem 4.2, a map f : {0, d, 1}n → {0, d, 1} is a term function
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Figure 5. The subalgebras of 32

of 3 if and only if f preserves the binary relations ∆,4,<,∼ and 32 shown in
Figure 5.

However, this is not an optimal set. It is trivial that every function preserves
the binary relations ∆ and 32 and that if a function preserves a relation r, it also
preserves its converse. Thus the binary relations ∆,< and 32 can be deleted from
the list of binary relations that need to be preserved.

We pause at this point to introduce a construct known as the relational product
of two binary relations r and s:

r · s := { (a, b) ∈M2 | (∃c ∈M) (a, c) ∈ r & (c, b) ∈ s }.

Notice that

< · 4= {00, dd, 11, d0, d1} · {00, dd, 11, 0d, 1d} = 32\{01, 10} = ∼.

That is, ∼ is the relational product of < and 4. It is easy to see that if r and s
are binary relations on a set M , then every map f : Mn → M that preserves r
and s also preserves r · s. Thus ∼ can also be removed from the list of relations
that need to be preserved. Hence the results we obtained by applying Theorem 4.2
can be refined as follows:

Theorem 4.3. For all n ≥ 1, a function f : {0, d, 1}n → {0, d, 1} is a term function
of 3 if and only if f preserves the binary relation 4.

Observe that 4 is an order relation with an order given in Figure 6. This
order is often referred to as the uncertainty order. It follows that a function
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f : {0, d, 1}n → {0, d, 1} is a term function of 3 if and only if f preserves the un-
certainty order. This result was obtained using only algebraic methods by the
Japanese electrical engineer, Masao Mukaidono [16].

d

0 1

Figure 6. The order 4 on {0, d, 1}

5. The natural dual and the restricted Priestley dual of ternary
algebras

5.1. Natural duality theory—a brief introduction. We want to find the natu-
ral dual for some arbitrary finite ternary algebra. We begin with a brief introduction
to the theory of natural dualities. For a more thorough treatment of this topic we
refer to Chapters 1 and 2 of [8]. Note that there will be no discussion of topology
as we will be working only at the finite level and at this level all topologies that
arise are discrete.

The various pieces of the puzzle that we require will be introduced. First, a finite
algebra M := 〈M ;F 〉 with an underlying set, M , and a set of finitary operations, F .
Associated with M is the class A := ISPf(M) of all algebras that are isomorphic
to a subalgebra of a finite direct product of copies of M. Just as every finite
Boolean algebra is an element of the class ISPf(2), it can be shown that every
finite ternary algebra is an element of the class T := ISPf(3). Second, we begin by
choosing R to be a set of finitary relations that are algebraic on M. That is, R is
a set of finitary relations which form subalgebras of the appropriate power of M.
We then form the relational structure M∼ := 〈M ;R〉. (In general, the type of M∼
may also include operations and partial operations, but they will not be needed in
the application to ternary algebras.) Associated with M∼ is the category of finite
structures X := ISPf(M∼ ).

Let A ∈ A. The natural dual of A is defined to be

D(A) := A(A,M) ⊆M∼
A.

That is, the natural dual of A is the set of all homomorphisms from A to M with
each relation r ∈ R extended pointwise to A(A,M). Thus D(A) ∈ X.

Let X ∈ X. The natural dual of X is defined to be

E(X) := X(X,M∼ ).

In fact, we can say more than this. Because R is a set of algebraic relations, it
follows that

E(X) := X(X,M∼ ) 6MX .

Thus E(X) ∈ A.
Finally, there is a natural evaluation map eA : A → ED(A). We say that M∼

yields a duality on A if eA is an isomorphism for all A ∈ A. As this map is always
a one-to-one homomorphism, we only need to show that the map eA is onto.
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5.2. The natural dual of T. We apply the development in Section 5.1 to the case
where M is the standard ternary algebra 3. The class T := ISPf(3) consists of all
finite ternary algebras. To find a natural dual for T we need to find a suitable 3∼.
That is, we need to find a suitable set of finitary algebraic relations on 3. We will
apply a special case of the NU-Duality Theorem from Davey and Werner [10] (see
also [8]).

Theorem 5.1. If M is any lattice-based finite algebra, then M∼ := 〈M ;S(M)2〉
yields a duality on A.

Thus, by Figure 5, the structure 3∼
′ = 〈{0, d, 1}; ∆,4,<,∼, 32〉 yields a natural

duality on T.

5.3. Optimizing the duality. A minimal set is easier to work with. So our aim
is to find a set of relations that entails the relations ∆,4,<,∼ and 32. Admissible
constructs include trivial relations and permutation (converse relations fall under
this category) but does not include relation product [8, pp. 55–59]. Thus our set
of relations includes 4 and ∼ so far.

It remains to see whether either of these relations, 4 or ∼, can be removed
from the set. We will, first, define what it means for an arbitrary M∼ not to yield
a duality on A and then return to our case. Also at this point we introduce
some additional notation. We shall denote the algebra whose underlying set is the
algebraic relation r by A(r). Observe that every algebraic relation is the underlying
set of an algebra.

Let Rω denote the set of all finitary algebraic relations on the algebra M.

M∼ := 〈M ;R〉 does not yield a duality on A := ISPf(M)

⇐⇒ (∃A ∈ A) eA : A→ ED(A) is not an isomorphism

⇐⇒ (∃A ∈ A) eA : A→ ED(A) is not onto

⇐⇒ (∃A ∈ A)(∃α ∈ ED(A))(∀a ∈ A) eA(a) 6= α

⇐⇒ (∃A ∈ A)(∃α : D(A)→M) α preserves the relations in R )

& (∀a ∈ A) eA(a) 6= α

⇐⇒ (∃A ∈ A)(∃α : D(A)→M) α preserves the relations in R

& (∃s ∈ Rω) α doesn’t preserve s.

Note that the only equivalence that is not simply by definition is the last which
holds by the Brute Force Theorem [8, 2.3.1].

Now assume that R ∪ {s} yields a duality on A. Then

M∼ := 〈M ;R〉 does not yield a duality on A

⇐⇒ (∃A ∈ A)(∃α : D(A)→M) α preserves the relations in R

& α does not preserve s

⇐⇒ (∃α : D(s)→M) α preserves the relations in R

& α does not preserve s.

The second last equivalence holds because R ∪ {s} yields a duality on A, by as-
sumption, and the final equivalence holds by the Test Algebra Lemma [8, 8.1.3].

Hence if we can find a function ϕ : T(A(∼),3)→ {0, d, 1} that preserves 4 but
not ∼ and a function δ : T(A(4),3) → {0, d, 1} that preserves ∼ but not 4 then
this is an optimal set.
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The set T(A(∼),3) contains the homomorphisms x1 and x2 shown in Figure 7.
Observe that x1 ∼ x2 and x2 ∼ x1, but x1 64 x2 and x2 64 x1.

1

d

0

11

d1 1d

0d d0

dd

00

1

d

0

11

d1 1d

dd

0d

00

x
1

x2

d0

Figure 7. The elements of T(A(∼),3)

The function ϕ : T(A(∼),3) → {0, d, 1} that maps x1 7→ 0 and x2 7→ 1 pre-
serves 4 but not ∼ since x1 ∼ x2 but ϕ(x1) = 0 � 1 = ϕ(x2).

The set T(A(4),3) contains the homomorphisms x3 and x4 shown in Figure 8.
Observe that x3 ∼ x4, x4 ∼ x3 and x3 4 x4 but x4 64 x3.

1

d

0

11

1d

dd

0d

00

1

d

0

11

1d

dd

0d

00

x3 x4

Figure 8. The elements of T(A(4),3)

The function δ : T(A(∼),3) → {0, d, 1} that maps x3 7→ d and x4 7→ 0 pre-
serves ∼ (as x3 ∼ x4 and δ(x3) = d ∼ 0 = δ(x4)) but not 4 since x3 4 x4
but δ(x3) = d � 0 = δ′(x4).

Thus we have found the functions we were looking for and so we can conclude
that 3∼ := 〈{0, d, 1};4,∼〉 yields an optimal duality on T.

Therefore,

(∀A ∈ T) D(A) = T(A,3) ∈ X

and

A ∼= ED(A) = X(D(A), 3∼).
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T X

D

E

Figure 9. The natural dual of T

It would be a useful exercise to find an axiomatization for the natural dual of T
as was done for the natural dual of Kleene algebras by Davey and Werner [10] (see
also [8]).

5.4. Restricted Priestley duality theory. Now we want to find the restricted
Priestley dual for an arbitrary finite ternary algebra. Again, we begin by introduc-
ing some basic background theory and the pieces of the puzzle.

Initially we will be moving between the class D01 of finite, bounded distributive
lattices and the class P of finite ordered sets. Let D := 〈{0, 1};∨,∧, 0, 1〉 be the two-
element bounded distributive lattice and D∼ := 〈{0, 1};6〉 the two-element ordered
set with 0 < 1. Then

(∀L ∈D01) H(L) := D01(L,D) and (∀P ∈ P) K(P) := P(P,D∼).

Just as D(A), for all A ∈ T, inherits its structure from 3∼, the Priestley dual
H(L) inherits its order from D∼. Thus H(L) ∈ P. At this point note that, as
D(L) ∼=∂ J(L) and E(P) ∼=∂ O(P), it is common to work with the join-irreducible
elements and simply flip things upside down or in the case of the double dual do
nothing as the two ∼=∂s cancel each other out.

In order to be able to determine the restricted Priestley dual of a ternary algebra
it remains to discuss how to deal with the unary operation ¬. This operation can be
viewed as the homomorphism ¬ : A→ A∂ . The restricted Priestley dual encodes ¬
by the map g which will be discussed next.

The restricted Priestley dual of ¬ is the order-reversing map

g := H(¬) : H(A∂)→ H(A).

As H(A)∂ ∼= H(A∂), the map g can also be expressed as

H(¬) : H(A)∂ → H(A).

An explicit formula for g will be given below.

5.5. The restricted Priestley dual of T via the restricted Priestley dual
of K. Recall that

3 := 〈{0, d, 1};∨,∧,¬, 0, d, 1〉 and K := 〈{0, d, 1};∨,∧,¬, 0, 1〉.
So every ternary algebra is in fact a Kleene algebra. We will build on what is
already known about Kleene algebras.

Davey and Priestley have previously established the restricted Priestley dual of
K, where K := ISPf(K) is the class of all finite Kleene algebras [9] (see also [8]).
We begin there.

Let Y = 〈Y ; g,6〉 where g : Y → Y and 6 is an order on Y . Then Y is the
restricted Priestley dual of a Kleene algebra, A ∈K, if and only if

(1) g is order-reversing,
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(2) g(g(y)) = y, for all y ∈ Y , and
(3) for all y ∈ Y , we have y 6 g(y) or y > g(y).

Define Y to be the class of all structures Y = 〈Y ; g,6〉 that satisfy (1)–(3) above.
For each A ∈K define the restricted Priestley dual of A to be

H(A) := 〈D(A,D); g,6〉.

Here the order is defined pointwise from D∼ and the map g is defined by

g(y) := c ◦ y ◦ f,

where c : {0, 1} → {0, 1} is the Boolean complementation operation and f(a) := ¬a,
is the negation operator of the algebra A.

To find the restricted Priestley dual of T we simply need to encode the nullary
operation d. We put an additional restriction on g. This restriction is given by

(4) (∀y) g(y) 6= y.

We can now define the restricted Priestley dual of A ∈ T. Let Z be the class of
all structures Z = 〈Y ; g,6〉 that satisfy (1)–(4) above. For each A ∈ T, define the
restricted Priestley dual of A to be

H(A) := 〈D(A,D); g,6〉 .

It should be pointed out that H was initially moving between D01 and P. However,
in the restricted Priestley duality for finite ternary algebras, H is now moving
between T and Z.

H

K

T Z

Figure 10. The restricted Priestley dual

6. Translating between the two duals

At this stage we have established both the natural dual and the restricted Priest-
ley dual of T. It remains to work out how to move between these two duals. See
Figure 11.

We will begin with translating from the natural dual to the restricted Priestley
dual. First, we give an informal description of the translation process. We formalize
this description in the next paragraph and then apply the translation to D(A(∼))
to find H(D(A(∼))).

Let A be a finite ternary algebra and consider the natural dual, D(A), ordered
by 4. To transform D(A) into the restricted Priestley dual of A, first find its
order-theoretic dual, D(A)∂ . Then take the disjoint union of D(A) and D(A)∂ .
Finally, the order-relation between D(A) and D(A)∂ is given by ∼. We will now
formally define the translation of the natural dual to the restricted Priestley dual.
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T

X

z

D
E

H

K

??

Z

Figure 11. The last piece of the puzzle

D(A)

D(A)
∂

Figure 12. T (D(A))

Given A and its natural dual D(A) ∈ X, define the structure

T (D(A)) := 〈D(A)× {1} ∪D(A)× {0};6, g〉

where 6 is defined by

(x, i) 6 (y, j) ⇐⇒ i = j = 1 & x 4 y

or i = j = 0 & x < y or i = 0 & j = 1 & (y, x) ∈ ∼

and g is given by

g((x, 1)) = (x, 0) & g((x, 0)) = (x, 1).

Then

T (D(A)) ∼= H(A) ∈ Z.

See Figure 12. Note that

(∗) |H(A)| = |T (D(A))| = 2|D(A)|.

Let us look at an example. Consider the ternary algebra A(∼). We want to
transform D(A(∼)) into H(A(∼)). First, the restricted Priestley dual of A(∼))
is H(A(∼)) = J(A(∼)). See Figure 13—the labelling of the elements comes from
Figure 5.

Second, the natural dual of A(∼) is T(A(∼),3), that is the set of all homo-
morphisms from A(∼) to 3. See Figure 14. It is easy to see that if we impose 4
pointwise on the set {x1, x2} we get the two-element antichain and if we impose ∼
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d1

0d

1d

d0

g g

Figure 13. The restricted Priestley dual of A(∼)

point-wise on {x1, x2} we get {x1, x2}2, that is the relation relating everything to
everything.

1

d

0

11

d1 1d

0d d0

dd

00

1

d

0

11

d1 1d

dd

0d

00

x
1

x2

d0

Figure 14. The homomorphisms from A(∼) to 3

Recall that we are trying to construct H(A(∼)). Given 4D(A(∼)) and ∼D(A(∼)),
we can construct H(A(∼)) as shown in Figure 15. For another example of the
translation process, T , see Figure 17.

x1 x2

X1

X0

(x ,1)1

(x ,0)1

(x ,1)2

(x ,1)2 (x ,1)2

(x ,1)2

(x ,0)1

(x ,1)1

X1

X0

g g

Figure 15. D(A(∼)) H(A(∼))

Now we want to start with the restricted Priestley dual and translate to the
natural dual. By Axioms (3) and (4) on page 10, we have

H(A) = D01(A,D) = X1
·∪X0 ∈ Z,

where
X1 = {x | x > g(x) } and X0 = {x | x < g(x) }.
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Now consider only 〈X1;6〉. Then

S(H(A)) := 〈X1;6〉 ∼= 〈A(A,3);4〉 ∈ X.

T

X

z

D
E

H

K

ST

Z

Figure 16. The complete picture

6.1. An application of the translation. Let FT(n) denote the free ternary al-

gebra on n generators, that is, the subalgebra of 3(3n) whose underlying set is the
set of n-ary term functions on 3. The following lemma is a standard result from
the theory of natural dualities (see [8, 2.24]).

Lemma 6.1. D(FT(n)) ∼= 3∼
n.

Thus by Lemma 6.1 and (∗) on page 11, we have

|J(FT(n))| = |H(FT(n))| = 2× 3n.

This result was first obtained by Balbes [2] via completely different methods. We
can also determine the order on the set of join-irreducible elements of the free-
algebra on n-generators:

J(FT(n)) = H(FT(n)) ∼= T (D(FT(n))) ∼= T (3∼
n).

See Figure 17 and Figure 18 for an example. As illustrated in Figures 17 and 18,
when working on the full power the minimal elements of D(A) cover the correspond-
ing maximal elements of D(A)∂ . The diagram in Figure 18 was first obtained by
Balbes using a completely different method which involved a detailed syntactic
analysis of ternary algebra terms [2].
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x xÚ Ø

1

0

x dÚ Ø Úx d

x d Øx

x dÙ Ø Ùx d

x xÙ Ø

d

d

0

0

1

1

D( (1))FT
∂

D( (1))FT

Figure 17. J(FT(1)) = H(FT(1)) and FT(1)

00 01

0d

dd

1dd0 d1

10 11

00 01 10 11

dd

0d d0 d1 1d

Figure 18. J(FT(2)) = H(FT(2))
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