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Given an initial point, x0, sets Si for i = 1, . . . , r and their corresponding nearest point projections
PSi , the method of alternating projections (MAP) attempts to finds a point in ∩r

i=1Si by cyclically pro-
jecting onto the sets. The original alternating projection result was due to von Neumann (1933) who
was able to prove that if the sets are subspaces MAP converges in norm to P∩r

i=1Si . Using MAP a point
in the intersection can be obtained when only the individual projection onto each of the sets are known.
When the underlying sets are convex, MAP and its variants are fairly well understood. However, despite
adequate theoretical justification, these techniques are routinely applied to problems involving one or
more non-convex sets with good results. In this report we examine some of the difficulties encountered
when dropping the assumption of convexity. This is achieved by developing a visual tool to investigate
specific examples using interactive geometry package Cinderella [5].

1 Preliminaries

Throughout, H denotes a Hilbert space equipped with inner product �·, ·� and induced norm � · �. We
distinguish convergence in norm from weak convergence by → and

w.
�, respectively. PS(x) denotes the

nearest point projection of x onto the set S. In general this is a set valued mapping, however in the case of
closed convex S the Kolmogorov’s criteria [4, Theorem 2.8] guarantees existence and uniqueness of PS(x).

Our problem can be formulated as followed: Given an initial point x0 ∈ H and sets S1, S2, . . . , Sr we
seek a feasible point x∗ ∈ ∩r

i=1Si. This framework is sufficiently general that it applies to many cases.
For example, if the sets are hyperplanes x∗ solves a system of linear equations, if the sets are convex x∗

solves a convex feasibility problem.

Our solution approach is the method of alternating projections (MAP). Informally speaking, given
an initial point we obtain each iteration by projecting onto the sets cyclically, with the desired point
obtained in the limit. The method can be used to find a point in the intersection of two or more sets
when it is unknown how to do so directly, but the projections onto each individual set are known. In
order to guarantee convergence constraints on the underlying sets are required, typically closed subspaces
or closed convex sets. The method and its variants are explained in greater detail in Section 2.

2 Three MAP Variants

In this section we present von Neumann’s classical MAP, its generalisation, and two variants: Douglas-
Rachford and Dykstra’s method.
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Figure 1: MAP for two 1-dimensional subspaces

Theorem 2.1 (von Neumann, 1933). Suppose S1, S2 are closed subspaces, then ∀x0 ∈ H:

lim
n→∞

(PS2PS1)
n x0 = PS1∩S2(x0)

von Neumann’s result was generalised to a finite number of closed subspaces by Haperin (1962).
Replacing the assertion of closed subspaces with closed convex sets, Bregman (1965) was able to obtain
weak convergence of the method. For closed convex sets, norm convergence remained an open question
until Hundal (2002) demonstrated its failure with a counterexample. An open question is to whether
MAP converges in norm under restrictions that are satisfied by many realistic cases.

Conjecture 2.2 (Norm convergence of realistic alternating projection models). If S1 has finite codi-

mension, closed and affine (a translate of a vector subspace) and S2 is the nonnegative cone in �2(N),
while S1 ∩ S2 �= ∅, the method of alternating projections is norm convergent.

In particular, Conjecture 2.2 is known to be true in the case when S1 is a closed hyperplane, but
remains open for codimension 2.

Theorem 2.3 (Douglas-Rachford, 1959). Suppose S1, S2 are closed convex sets, then ∀x0 ∈ H:

xn+1 :=
xn +RS2RS1(xn)

2
where RSi(x) := 2PSi(x)− x

then xn
w.
� x, a fixed point, with PS1(x) ∈ S1 ∩ S2.

Theorem 2.4 (Dysktra, 1986). Suppose Si is a closed convex set for i = 1, 2, . . . , r, then ∀x0 ∈ H:

x0
n := xr

n−1, xi
n := PSi(x

i−1
n − Iin−1), Iin := xi

n − (xi−1
n − Iin−1)

with initial values xr
0 := x0, Ii0 := 0, then xn → P∩r

i=1Si(x0).

In the particular case when the sets are subspaces, Dykstra’s method reduces to the classical von
Neumann MAP.

We note that many other MAP variants have been studied. Another of note is that of averaged
projections, which can easily parallelised.



3 A Non-Convex Case

As a first step to developing theoretical understanding for the non-convex case, convergence results have
been obtained for the Douglas-Rachford scheme in the particular two set case of a proper affine subset
and a Euclidean sphere [2]. Here we consider the follow two set example, only in R2, with one non-convex
set1.

S1 := {�a, x� = b : x ∈ H}, S2 := {�x� 1
2
= 1 : x ∈ H}

The projection onto, S1, the line (or more generally the hyperplane), PS1 , can be obtained by trans-
lating the space so the hyperplane passes through the origin, projecting and then undoing the translation.
This method can be used to obtain a projection whenever the sets are closed and convex [4, Exercise 5.2].

Fact 3.1 (Nearest point on hyperplane). The nearest point projection of any point x0 ∈ H onto the

hyperplane �a, x� = b is:

PS1(x) = x+
b− �a, x�

�a�2
a

The nearest point projection onto the Euclidean sphere is simply the radial projection, x �→ x/�x�.
However the projection on the 1/2-sphere is significantly more difficult to compute. Lagrangian multi-
pliers can be used to obtain the projection on to the p-sphere [3, Exercise 2.3.19], with the desired result
obtained by setting p = 1/2.

Fact 3.2 (Nearest point on p-sphere). For 0 < p < ∞, consider the p-sphere in two dimensions:

Sp := {(x, y) : |x|p + |y|p = 1}

Let z∗ := (1 − zp)1/p. For uv �= 0, the best approximation PSp(u, v) = (sgn(u)z, sgn(v)z∗) where either

z = 0, 1 or 0 < z < 1 solves:

z∗p−1(z − |u|)− zp−1(z∗ − |v|) = 0
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Figure 2: Important regions for the 1/2-sphere projections.

Figure 2 shows regions of interest for the projection onto the 1/2-sphere. Region 1 represent points
that could potentially project onto the interior of the piecewise curve and regions 2 and 3 to the cusps
at (0, 1) and (1, 0), respectively. For the 1/2-sphere the nearest point projection of a point x is always
in the same quadrant as x.

1�x�p denotes the p-norm. In two dimensions �x�p = (|x1|p + |x2|p)
1
p .



3.1 An Interactive Tool

To better understand MAP behaviour, a visual tool was developed using interactive geometry package
Cinderella [5]. It is available online at http://carma.newcastle.edu.au/summer/matt/, both as a Cin-
derella file and as an interactive Java applet.

Figure 3: A screenshot of the Cinderella applet investigating an instance of von Neumann’s MAP.

The applet allows for many trajectories to be rapidly investigated by moving the initial point. The
feasible region can be modified by translating/rotating the line, or adjusting the p-parameter. Radio
buttons on the left hand site of Figure 3 allow the projection method of choice to be selected and con-
struction visibility can be toggled. This is particularly important for understanding behaviour. The
number of iterations shown can also be varied.

3.2 Illustration of Difficulties and Results

In the case of non-convex sets, the method of alternating projections encounters a number of difficulties.
Uniqueness of the nearest point projection is no longer guaranteed and consequently a point may need
to be selected from the set of nearest points, at each iteration. The question Which is the ‘right’ nearest

point? must be answered.

Example 3.2.1 (Non-unique nearest point). Let x ∈ {(x, y) : y = x, x ≥ 1} then PS2(x) = {(1, 0), (0, 1)}.

Global convergence of the algorithm is no longer achievable, instead we aim for local convergence
results. In practice, this can be troublesome, particularly in the case when a problem contains a non-
empty feasible set but is ‘locally infeasible’ for some starting point. This is illustrated in Example 3.2.2.
A potential resolution is to choose a good starting point, although this may be a difficult problem in itself.

http://carma.newcastle.edu.au/summer/matt/


Example 3.2.2. Local convergence of von Neumann’s MAP.

Proposition 3.2.1. Consider Dykstra’s MAP on two sets, where the second is the hyperplane �a, x� = b,
then for each n, x0

n − I1n−1 is of the form x0 + ta for some t ∈ R.

Proposition 3.2.1 gives a sufficient condition for failure of Dykstra’s MAP. In particular, if there does
not exist a sequence of points, yn, on the line x0 + ta such that PS1(yn) approaches a feasible point.
Figure 4 shows an example of this in the two dimensional case in which periodic behaviour is observed.

Figure 4: Periodic behaviour of Dyktra’s MAP, without (left) and with (right) constructions.

This behaviour is also present using Dysktra’s MAP for other non-convex cases. Figure 5 shows two
sets, defined by exponential curves of the form A + B exp(−x/a), in which the iterates are conjectured
to be asymptotically periodic.

Of the three MAP considered, the Douglas-Rachford scheme appears most robust. Convergence to
a feasible point was always obtained. Interesting, in the case of convergence to a feasible point iterates
exhibit ‘spiralling behaviour’ and divergence in the case of infeasibility. The latter gives a potential
method to detect infeasibility.



Figure 5: Conjectured asymptotic periodicity in Dykstra’s MAP.

Figure 6: Behaviour of Douglas-Rachford, (left) Spiralling iterations and (right) an infeasible problem.
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