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1 Introduction

The Riemann-zeta function has held the attention of mathematicians for centuries. It first arose in

1644, when Pietro Mengoli posed to the mathematical community the problem of finding the sum

of the squares of the reciprocals of the natural numbers
∞∑
n=1

1

n2
=? (1)

A solution was found by then-28 year old Leonard Euler, launching his mathematical career. His an-

swer, whilst ingenious, relied on an assumption which would not be made rigorous until Hadamard’s

theory of factorisation of entire functions, however numerical confirmation emboldened him to re-

lease his results. Let’s start with a simple overview of Euler’s proof [2]. Consider the function

sin(πx), which has roots at x = 0,±1,±2,±3, · · · . Now define f(x) to be

f(x) =
sin(πx)

πx
(2)

This removes the root at zero (l’Hopital’s rule), and we are left with roots at the non-zero integers.

Euler made the leap of presuming that we could treat f(x) as if it were a polynomial with these

same roots

f(x) = (1− x)(1 + x)(1− x/2)(1 + x/2) · · ·

= (1− x2)(1− x2/4)(1− x2/9) · · ·
(3)

By taking a Taylor series, we have an alternative definition for f(x)

f(x) =

(
πx− (πx)3

3!
+

(πx)5

5!
· · ·
)
/(πx) (4)
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In our polynomial representation for f(x), the coefficient of x2 is

−(1 +
1

4
+

1

9
+ · · · ) (5)

By equating coefficients with the Taylor series for f(x), Euler arrived at his famous result

∞∑
n=1

1

n2
=
π2

6
(6)

Euler continued to explore the sum of the reciprocals of the natural numbers raised to some integer

power, s, which was later expanded to the complex plane, and has led to the formal definition of

the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
, <(s) > 1 (7)

2 Multiple Zeta Function

The multiple zeta function is an extension of the Riemann-zeta function to multiple parameters

ζ(s1, · · · , sk) =
∑

ns1>ns2>···>nsk

1

ns1
s1n

s2
s2 · · ·nsk

sk

(8)

In this paper we make reference to multiple zeta values, which are defined as the real number

ζ(s1, · · · , sk) for some positive integer arguments s1, · · · , sk, with s1 > 1 (i.e an output of the

multiple zeta function for some integer arguments). A little terminology: the length of a multiple

zeta value is the integer k > 0, which is the number of parameters supplied, and the weight of

a multiple zeta value is the sum total of its parameters. For example, ζ(3, 1, 2) has length 3 and

weight 6. The multiple zeta function has some very nice properties. One thing to appreciate is that

the space of multiple zeta values is closed under multiplication. That is, the product of any two

multiple zeta values is a linear combination of multiple zeta values. Consider the simplest possible

case, with two multiple zeta values of length 1

ζ(a)ζ(b) = ζ(a, b) + ζ(a+ b) + ζ(b, a) (9)

This may be written more explicitly as

∞∑
na=1

1

na
a

∞∑
nb=1

1

nb
b

=
∑

na>0,nb>0

1

na
an

b
b

(10)
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In each term in the resulting sum, na and nb will obey exactly one of the following relations

(na > nb), (na = nb), (na < nb) (11)

Thus, the resultant sum may be split as follows:

ζ(a)ζ(b) =
∑
na>nb

1

na
an

b
b

+
∑
na=nb

1

na
an

b
b

+
∑
na<nb

1

na
an

b
b

(12)

And our previous claim becomes clear. For the general case of multiple zeta value multiplication,

we have

ζ(s1, · · · , sj)ζ(t1, · · · , tk) =
∑

ns1>···>nsj ,
nt1>···>ntk

1

ns1
s1 · · ·n

sj
sjn

t1
t1 · · ·ntk

tk

(13)

and we may assume j ≤ k without loss of generality. We know from the multiple zeta function

definition that the ns and nt values will retain their respective ordering, however the ordering

between ns and nt values could be shuffled any number of ways. For example, all of the terms

in the resulting product which obey the ordering (ns1 > · · · > nsj > nt1 > · · · > ntk) will give

rise to the multiple zeta value ζ(s1, · · · , sj, t1, · · · , tk). In brief, the resulting linear combination of

multiple zeta values will correspond to all the ways the s parameters can be shuffled through the t

parameters.

3 Q-Vector Spaces

Let Ar be defined as the Q-vector space of all multiple zeta values of weight r. In detail, Ar is the

vector space spanned by all rational linear combinations of multiple zeta values whose parameters

sum to r. For example

A2 = {αζ(2) : α ∈ Q}

A3 = {α1ζ(3) + α2ζ(2, 1) : α1, α2 ∈ Q}
(14)

Notice that when we were multiplying together two multiple zeta values, the weights of the resulting

multiple zeta values were the sum of the weights of the operands. In other words, a graded algebra

exists over the multiple zeta values

ArAs ⊆ Ar+s (15)

This is analogous to spaces spanned by polynomials: a polynomial of degree j multiplied by a

polynomial of degree k will yield a polynomial of degree j + k.
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How many valid multiple zeta values are there in our spanning set for Ar? This turns out to be

an integer partitioning problem over r. If we imagine r stars in a line, each star having value 1

towards our total weight, we can partition these into separate parameters by placing bars between

them. For example

ζ(4) = FFFF

ζ(3, 1, 2) = FFF|F|FF
(16)

There are r − 1 places we might put a bar, however our requirement that s1 > 1 means there are

only r − 2 valid positions. Since, for each position, we could place a bar or not place a bar, this

leads to 2r−2 multiple zeta values of weight r.

The next obvious question is: what are the dimensions of the Ar spaces? Hoffman has conjectured

that the set of multiple zeta values of weight r, with all parameters either 2 or 3, forms a basis for

Ar. Let’s call this basis

Yr =

{
ζ(s1, · · · , sk) :

∑
i

si = r, each si ∈ {2, 3}

}
(17)

This result comes from the study of motivic zeta values, which we will not address here. Zagier

has built on this to arrive at the equivalent conjecture that the dimensions of the Ar spaces obey a

Fibonnacci-like recurrence

dr = dr−2 + dr−3, r ≥ 3 (18)

where dr is the dimension of Ar, and with base cases d0 = 1, d1 = 0, d2 = 1.

4 Z-Modules

Abandoning the rational numbers, we chose to investigate the Z-modules Br, where Br is the integer

span of all multiple zeta values of weight r. These modules should satisfy the same conjectured

dimensional relationship for our Ar, however it will take more work to find bases. Hoffman’s basis

vectors will remain linearly independent in Br, however in general they will no longer be a spanning

set. To see why this is, consider {5ζ(2)} which is a basis for A2, however is not a basis for B2.
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5 Numerical Computation

Numerical calculation of multiple zeta values is complicated by the presence of nested, infinite sums.

In order to calculate multiple zeta values rapidly, we employed an algorithm devised by Richard

Crandall in his paper Fast Evaluation of Multiple Zeta Sums [1]. Crandall makes use of a nested-

integral representation of the multiple zeta function. Through several clever manipulations and

change of variables, he arrives at a method which treats a multiple zeta value almost as a single

sum. After implementing this algorithm, we were able to compute zeta values to over 120 digits of

accuracy in a matter of seconds.

To find integer relations among multiple zeta values, and thus construct a basis, we made use of

the LLL algorithm - a polynomial-time lattice reduction algorithm invented by Lenstra, Lenstra

and Lovasz [4]. In its original form, this algorithm takes as parameters a basis of integer vectors for

some lattice in Rn, and outputs a new basis of short, nearly orthogonal vectors. Several problems

in mathematics can be converted into lattice reduction problems and thus can be solved with the

LLL algorithm. It happens that searching for integer relations amongst real numbers falls into such

a category. With the help of a Sage wrapper function, we were able to pass in vectors of multiple

zeta values

(ζ1, ζ2, · · · , ζk) (19)

and as output, receive a flag (indicating whether the integer relation search was likely successful)

and a vector of integers

(α1, · · · , αk) (20)

satisfying the following relation:

α1ζ1 + · · ·+ αkζk = 0 (21)

Each iteration of this algorithm would find a single integer relation amongst the ζs.

6 Finding a Basis

We know, whilst not generally a basis for Br, Hoffman’s conjectured Y basis will still remain a

linearly independent set of vectors within Br (after all, the integers are a subset of the rational

numbers). Our method for constructing bases is as outlined. For each r ≥ 3, we found the set of
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multiple zeta values, Z, which span Br

Z =

{
ζ(s1, · · · , sk) :

∑
i

si = r

}
(22)

Z can be split into two subsets, Y and X, where:

Y = {z ∈ Z : each of z’s parameters ∈ {2, 3}}

X = Z\Y
(23)

We know that each of the elements in X will be expressible in terms of elements in Y , and thus it

is possible to construct a matrix M , such that

M


y1

y2
...

yd

 = a basis for Br (24)

To find M, we cycle through each z ∈ Z, and run our integer relation algorithm on the vector

(y1, · · · , yd, zi) (25)

which outputs an integer vector of the form

(α1, · · · , αd+1) (26)

This satisfies the relation

α1y1 + · · ·+ αdyd + αd+1zi = 0 (27)

The lowest common denominator of all the αd+1 values is calculated, let’s call this number L, and

each vector (α1, · · · , αd) is scaled up by L/αd+1. These (β1, · · · , βd) vectors (we’ve truncated the

last entry) now form the rows of a preliminary matrix, H, and are coefficient vectors for each zi in

terms of elements in Y , scaled up by common factor L.

H =



L 0 · · · 0

0 L · · · 0
...

. . .

0 0 · · · L

β1,1 β1,2 · · · β1,d
...

. . .

βe,1 βe,2 · · · βe,d


(28)
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H now satisfies the following

H


y1
...

yd

 = −L


z1
...

zd+e

 (29)

Note that the scaled identity matrix forming the upper dxd portion of H arises from when zi comes

from within the subset Y . H now describes each multiple zeta value z ∈ Z, in terms of elements of

Y . It remains for H to be reduced somehow to M (with only d non-zero rows), which will give us

our d basis vectors for Br. There is a slight complication; since we are dealing with finding integer

spans of multiple zeta values, we are not allowed to scale up any row (negation is still allowed).

This is due to integers not having multiplicative inverses. We can switch rows, and add multiples of

one row to another. This type of reduction (for which we utilised a builtin Sage function) produces

the Hermite Normal Form of a matrix, which is an analogue of row-reduced Echelon form when

one is dealing with integers rather than real or rational numbers. Finding M is now just a matter

of reducing H to its Hermite Normal Form, then multiplying it by −1/L. Finally,

M


y1

y2
...

yd

 (30)

gives our basis vectors. Our program was able to calculate bases for Br for r up to 9, after which

computation time grew infeasible. Further optimisation should find bases for larger r. We have not

yet found a pattern amongst the bases.
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7 Results

r = 2: ζ(2)

r = 3: ζ(3)

r = 4:
1

3
ζ(2, 2)

r = 5:
1

5
ζ(3, 2) +

4

5
ζ(2, 3), ζ(2, 3)

r = 6: ζ(3, 3),
1

9
ζ(2, 2, 2)

r = 7:
1

151
ζ(3, 2, 2) +

98

151
ζ(2, 3, 2) +

80

453
ζ(2, 2, 3),

ζ(2, 3, 2),
1

3
ζ(2, 2, 3)

r = 8:
1

275
ζ(3, 3, 2) +

194

275
ζ(3, 2, 3) +

236

275
ζ(2, 3, 3)+

169

4125
ζ(2, 2, 2, 2), ζ(3, 2, 3), ζ(2, 3, 3),

1

15
ζ(2, 2, 2, 2)

r = 9: ζ(3, 3, 3),
1

43785
ζ(3, 2, 2, 2)+

1566

4865
ζ(2, 3, 2, 2) +

4237

14595
ζ(2, 2, 3, 2) +

811

4865
ζ(2, 2, 2, 3),

1

3
ζ(2, 3, 2, 2) +

1

9
ζ(2, 2, 2, 3),

1

3
ζ(2, 2, 3, 2),

1

3
ζ(2, 2, 2, 3)
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