
Numerical Solutions of One-Dimensional Shallow
Water Equations

Peter Crowhurst
Supervised By: Dr Zhenquan Li

School of Computing and Mathematics, Charles Sturt University

February 28, 2013

Introduction

This project contemplates numerical solutions to the non-linear Shallow Water Equa-
tions (SWE’s) using a finite difference method for discretization of space and time
variables. A linearization error is introduced for evaluating accurate numerical solu-
tions. Accurate numerical solutions are obtained by efficient repositioning of mesh
points for reducing the linearization error.

The SWE’s are derived from accepted laws of physics conservation-of-momentum and
hydro static laws. These are combined into a set of non-linear differential equations.

Solving the SWE’s allows a person to derive two important unknown components,
height of the wave and velocity, where height of the wave h(x, t) is a function of space
x and time t and similarly for the wave velocity u(x, t).

Sets of time-stepped solutions are calculated numerically, subject to well defined initial
conditions u(x, 0) = 0, initial displacement h(x, 0) = 1 + 2

5
exp(−5x2), and boundary

conditions for height h(xa, t) = 1 and h(xb, t) = 1, and for velocity u(xa, t) = 0 and
u(xb, t) = 0.

Using the initial and boundary conditions, a set of time-stepped numerical solutions
can be calculated to provide a set of solutions for the unknown velocity and height of
a wave propagating through an incompressible media with a given constant density ρ.

This project applies the finite difference method to solve SWE’s, in contrast to a closed
form or exact solution using eigenvalues and eigenvectors [1] and an adaptive finite vol-
ume method [2].

This project demonstrates that finite difference methods can be used to solve SWE’s
and that further benefit can be obtained through mesh refinement and or optimisation,
driven by error value targets. This benefit is a reduction of demand on memory size
through efficient positioning of nodes based upon the error indicator.

Background to developing the one-dimensional SWE’s

In deriving the one-dimensional shallow water equation, fluid (water) in a channel
of unit width was contemplated. The vertical velocity of the water was assumed to
be negligible and the horizontal velocity u(x, t) as roughly constant throughout the
channel cross section. This can be said to be true for small waves having a wave length
greater than the depth. The fluid is assumed to be incompressible, so density ρ is
constant. The depth of fluid given by h(x, t) and velocity are variables for which we
seek solutions.

Figure 1: Graph of h(x, t)

The total mass in x1 ≤ x ≤ x2 at time t can be written as∫ x2

x1

ρh(x, t) dx.

Density of momentum at each point is ρu(x, t)h(x, t), where the constant ρ drops
out of the conservation-of-mass equation, which then takes the familiar form

ht + [uh]x = 0. (1)

The conservation-of-momentum equation also takes the form of the gas dynamics equa-
tion

(ρhu)t +
(
ρhu2 + p

)
x

= 0.

Pressure p is determined by the hydrostatic law, stating the pressure at distance h− y
below the surface is ρg(h− y), where g is the gravitational constant. This pressure is
as a result of the fluid weight above that particular point. Integrating over the interval
0 ≤ y ≤ h(x, t) gives the total pressure occurring at a particular point in space and
time.

The correct pressure term in the momentum flux is

p =
1

2
ρgh2.

Using this form and cancelling ρ we get

(hu)t +

(
hu2 +

1

2
gh2
)
x

= 0. (2)

Collecting the two equations (1) and (2) as a system of differential equations gives[
h
hu

]
t

+

[
uh

hu2 + 1
2
gh2

]
x

= 0. (3)

Solving the Non-Linear Differential Equations Numerically

This project only considers a single hump of water as in [1], using an initial condi-
tion of h(x, 0) = 1 + 2

5
e−5x

2
, and boundary conditions for height and velocity as in [1]

of −5 ≤ x ≤ 5, g = 1 and h(xa, t) = h(xb, t) = 1, and u(xa, t) = u(xb, t) = 0.

The number of steps for space is N where N ∈ Z+ and the spatial index is i,
1 ≤ i ≤ N + 1. The step step size is δ = xb−xa

N
.

Thus xi = xa + (i − 1)δ, x1 = xa and xN+1 = xb, and for N small intervals there will
be N − 1 nodes.

Similarly for time, the total number of steps are M where M ∈ Z+. For time tj,
j ∈ Z+ : 1 < j ≤M .

In developing the difference equations, forward difference for time and central dif-
ference for space has been used.

Figure 2: Mesh [3]

Developing the difference equations

Writing the corresponding difference equations of (1) and (2) term by term, as fol-
lows we assume that we know the values of h(x, t) and u(x, t) at time tj−1 and then
find the values at time tj.

Forward difference for time

d

dt
h(x, t)⇒ h (xi, tj)− h (xi, tj−1)

ζ

⇒ hi,j − hi,j−1
ζ

and

d

dt
[h(x, t)u(x, t)] = h(x, t)

d

dt
u(x, t) + u(x, t)

d

dt
h(x, t)

⇒ h(xi, tj−1)
d

dt
u(xi, tj−1) + u(xi, tj−1)

d

dt
h(xi, tj−1)

⇒ hi,j−1
ui,j − ui,j−1

ζ
+ ui,j−1

hi,j − hi,j−1
ζ

.

Central difference for space

d

dx
[u(x, t)h(x, t)] = u(x, t)

d

dx
h(x, t) + h(x, t)

d

dx
u(x, t)

⇒ u(xi, tj−1)
d

dx
h(xi, tj) + h(xi, tj−1)

d

dx
u(xi, tj)

⇒ ui,j−1
hi+1,j − hi−1,j

2δ
+ hi,j−1

ui+1,j − ui−1,j
2δ

and

d

dx

[
h(x, t)u2(x, t) +

1

2
gh2(x, t)

]
=

d

dx

[
h(x, t)u2(x, t)

]
+

1

2
g
d

dx
h2(x, t)

where

d

dx

[
h(x, t)u2(x, t)

]
= h(x, t)

d

dx
u2(x, t) + u2(x, t)

d

dx
h(x, t)

= 2h(x, t)u(x, t)
d

dx
u(x, t) + u2(x, t)

d

dx
h(x, t)

⇒ 2hi,j−1ui,j−1
ui+1,j − ui−1,j

2δ
+ u2i,j−1

hi+1,j − hi−1,j
2δ

⇒ hi,j−1ui,j−1
ui+1,j − ui−1,j

δ
+ u2i,j−1

hi+1,j − hi−1,j
2δ

and for the second term

d

dx

1

2
gh2(x, t) = 2

1

2
gh(x, t)

d

dx
h(x, t)

= ghi,j−1
hi+1,j − hi−1,j

2δ
.

The corresponding difference equations of (1) and (2) are as follows.[
hi,j−hi,j−1

ζ

hi,j−1
ui,j−ui,j−1

ζ
+ ui,j−1

hi,j−hi,j−1

ζ

]
+[

ui,j−1
hi+1,j−hi−1,j

2δ
+ hi,j−1

ui+1,j−ui−1,j

2δ

hi,j−1ui,j−1
ui+1,j−ui−1,j

δ
+ u2i,j−1

hi+1,j−hi−1,j

2δ
+ ghi,j−1

hi+1,j−hi−1,j

2δ

]
=

[
0

0

]

or for mass in discrete form

hi,j − hi,j−1
ζ

+ ui,j−1
hi+1,j − hi−1,j

2δ
+

hi,j−1
ui+1,j − ui−1,j

2δ
= 0

(4)

and momentum in discrete form

hi,j−1
ui,j − ui,j−1

ζ
+ ui,j−1

hi,j − hi,j−1
ζ

+

hi,j−1ui,j−1
ui+1,j − ui−1,j

δ
+ u2i,j−1

hi+1,j − hi−1,j
2δ

+

ghi,j−1
hi+1,j − hi−1,j

2δ
= 0

(5)

Multiplying (4) by ui,j−1

ui,j−1
hi,j − hi,j−1

ζ
+ u2i,j−1

hi+1,j − hi−1,j
2δ

+

ui,j−1hi,j−1
ui+1,j − ui−1,j

2δ
= 0

(6)

Subtracting (4) from (5)

ui,j−1
hi,j−hi,j−1

ζ
+ u2i,j−1

hi+1,j−hi−1,j

2δ
+ ui,j−1hi,j−1

ui+1,j−ui−1,j

2δ

hi,j−1
ui,j−ui,j−1

ζ
+ ui,j−1hi,j−1

ui+1,j−ui−1,j

2δ
+ ghi,j−1

hi+1,j−hi−1,j

2δ

= 0
= 0

(7)

Removing the u2i,j−1 component from (5) by dividing through with ui,j−1

hi,j−hi,j−1

ζ
+ ui,j−1

hi+1,j−hi−1,j

2δ
+ hi,j−1

ui+1,j−ui−1,j

2δ

hi,j−1
ui,j−ui,j−1

ζ
+ ui,j−1hi,j−1

ui+1,j−ui−1,j

2δ
+ ghi,j−1

hi+1,j−hi−1,j

2δ

= 0
= 0

(8)

Multiplying (4) and (5) by 2δζ

2δ (hi,j − hi,j−1) + ζui,j−1 (hi+1,j − hi−1,j) + ζhi,j−1 (ui+1,j − ui−1,j)
2δhi,j−1 (ui,j − ui,j−1) + ζui,j−1hi,j−1 (ui+1,j − ui−1,j) + ζghi,j−1 (hi+1,j − hi−1,j)

= 0
= 0

Multiplying out the terms for (4)

2δhi,j − 2 δhi,j−1 + ζui,j−1hi+1,j−
ζui,j−1hi−1,j + ζhi,j−1ui+1,j − ζhi,j−1ui−1,j = 0

(9)

and (5)

2δhi,j−1ui,j−2δhi,j−1ui,j−1 + ζui,j−1hi,j−1ui+1,j−
ζui,j−1hi,j−1ui−1,j + ζghi,j−1hi+1,j − ζghi,j−1hi−1,j = 0

(10)

Moving the known terms to right side for (4)

2δhi,j + ζui,j−1hi+1,j−ζui,j−1hi−1,j+
ζhi,j−1ui+1,j − ζhi,j−1ui−1,j = 2δhi,j−1

(11)

and (5)

2δhi,j−1ui,j+ζui,j−1hi,j−1ui+1,j−
ζui,j−1hi,j−1ui−1,j + ζghi,j−1hi+1,j−

ζghi,j−1hi−1,j = 2δhi,j−1ui,j−1

(12)

By way of example I take N = 4, finding the initial solution for the discretized linear
equations as follows:

For i = 1

2δh1,j + ζu1,j−1h2,j−
ζu1,j−1h0,j + ζh1,j−1u2,j−

ζh1,j−1u0,j = 2δh1,j−1

(13)

and

2δh1,j−1u1,j + ζu1,j−1h1,j−1u2,j−
ζu1,j−1h1,j−1u0,j+ζgh1,j−1h2,j−

ζgh1,j−1h0,j = 2δh1,j−1u1,j−1

(14)

For i = 2

2δh2,j + ζu2,j−1h3,j−
ζu2,j−1h1,j + ζh2,j−1u3,j−

ζh2,j−1u1,j = 2δh2,j−1

(15)

and

2δh2,j−1u2,j + ζu2,j−1h2,j−1u3,j−
ζu2,j−1h2,j−1u1,j + ζgh2,j−1h3,j−

ζgh2,j−1h1,j = 2δh2,j−1u2,j−1

(16)

For i = 3

2δh3,j + ζu3,j−1h4,j−
ζu3,j−1h2,j + ζh3,j−1u4,j−

ζh3,j−1u2,j = 2δh3,j−1

(17)

and

2δh3,j + ζu3,j−1h4,j−
ζu3,j−1h2,j + ζh3,j−1u4,j−

ζh3,j−1u2,j = 2δh3,j−1

(18)

From the boundary conditions, the initial velocity is zero, namely u(xa, t) = u(xb, t) =
0, and the initial height is set to be h(xa, t) = h(xb, t) = 1, we find u0,j = 0, u4,j = 0,
h0,j = 1, and h4,j = 1.

Therefore, the unknowns are u1,j, u2,j, u3,j, h1,j, h2,j, h3,j and the above six equa-
tions can be simplified as:

For i = 1

2δh1,j + ζu1,j−1h2,j + ζh1,j−1u2,j = 2δh1,j−1 + ζu1,j−1
2δh1,j−1u1,j + ζu1,j−1h1,j−1u2,j + ζgh1,j−1h2,j = 2δh1,j−1u1,j−1 + ζgh1,j−1

For i = 2

2δh2,j + ζu2,j−1h3,j−
ζu2,j−1h1,j + ζh2,j−1u3,j−

ζh2,j−1u1,j = 2δh2,j−1

(19)

and

2δh2,j−1u2,j + ζu2,j−1h2,j−1u3,j−
ζu2,j−1h2,j−1u1,j + ζgh2,j−1h3,j−

ζgh2,j−1h1,j = 2δh2,j−1u2,j−1

(20)

For i = 3

2δh3,j − ζu3,j−1h2,j − ζh3,j−1u2,j = 2δh3,j−1 − ζu3,j−1
2δh3,j−1u3,j − ζu3,j−1h3,j−1u2,j − ζgh3,j−1h2,j = 2δh3,j−1u3,j−1 − ζgh3,j−1

Sorting and ordering the above six equations

0 ζh1,j−1 0 2δ ζu1,j−1 0
2δh1,j−1 ζu1,j−1h1,j−1 0 0 ζgh1,j−1 0
−ζh2,j−1 0 ζh2,j−1 −ζu2,j−1 2δ ζu2,j−1

−ζu2,j−1h2,j−1 2δh2,j−1 ζu2,j−1h2,j−1 −ζgh2,j−1 0 ζgh2,j−1
0 −ζh3,j−1 0 0 −ζu3,j−1 2δ
0 −ζu3,j−1h3,j−1 2δh3,j−1 0 −ζgh3,j−1 0

u1,j
u2,j
u3,j
h1,j
h2.j
h3,j

 =

2δh1,j−1 + ζu1,j−1
2δh1,j−1u1,j−1 + ζgh1,j−1

2δh2,j−1
2δh2,j−1u2,j−1

2δh3,j−1 − ζu3,j−1
2δh3,j−1u3,j−1 − ζgh3,j−1

Let

A =

0 ζh1,j−1 0 2δ ζu1,j−1 0

2δh1,j−1 ζu1,j−1h1,j−1 0 0 ζgh1,j−1 0
−ζh2,j−1 0 ζh2,j−1 −ζu2,j−1 2δ ζu2,j−1

−ζu2,j−1h2,j−1 2δh2,j−1 ζu2,j−1h2,j−1 −ζgh2,j−1 0 ζgh2,j−1
0 −ζh3,j−1 0 0 −ζu3,j−1 2δ
0 −ζu3,j−1h3,j−1 2δh3,j−1 0 −ζgh3,j−1 0

 ,

X =

u1,j
u2,j
u3,j
h1,j
h2,j
h3,j

 ,

b =

2δh1,j−1 + ζu1,j−1
2δh1,j−1u1,j−1 + ζ

2δh2,j−1
2δh2,j−1u2,j−1

2δh3,j−1 − ζu3,j−1
2δh3,j−1u3,j−1 − ζgh3,j−1

 ,

The six equations now have the linear form AX = b which can be solved, starting first
with the known initial conditions.

Finite Difference Model Results

Figure 3: Graph of h and hu from [1] t = 0

Figure 4: Graph of h and hu using finite difference t = 0

Figure 5: Graph of h and hu from [1] t = 0.5

Figure 6: Graph of h and hu using finite difference t = 0.5

Figure 7: Graph of h and hu from [1] t = 1

Figure 8: Graph of h and hu using finite difference t = 1

Figure 9: Graph of h and hu from [1] t = 2

Figure 10: Graph of h and hu using finite difference t = 2

Figure 11: Graph of h and hu from [1] t = 3

Figure 12: Graph of h and hu using finite difference t = 3

The accuracy of both h and hu profiles at t = 0.5 shown in Figure 6 are good by
comparing with the corresponding results in Figure 5. The same accuracy is obtained
for both h and hu profiles at t = 1 shown in Figure 8 by comparing with the corre-
sponding results in Figure 7. However, the accuracy of both h and hu profiles at t = 2
and t = 3 are not good at the peak of waves by comparing with the corresponding
profiles in Figure 9 and Figure 11. We introduce the approach of mesh refinement to
improve the accuracy in the following section.

Approaches for Mesh Refinement

Mesh refinement, or node positioning, can occur globally for j, or locally around a
given index j. The mesh refinement is based upon an error indicator at (i, j), namely
the errors from the linearisation of the non-linear problem (3). This project progressed
refinement for all i and j.

Figure 13: Stepped Solutions

As a finite difference, the error indicator is calculated in a different way, as follows.

Discrete (1) at (i, j) becomes

d

dt
h(x, t) + u(x, t)

d

dx
h(x, t) + h(x, t)

d

dx
= 0

hi,j − hi,j−1
ζ

+ ui,j
hi+1,j − hi−1,j

2δ
+ hi,j

ui+1,j − ui−1,j
2δ

= 0 (21)

and discrete (2) at (i, j) becomes

d

dx
[u(x, t)h(x, t)] +

d

dx

[
h(x, t)u(x, t)2 +

1

2
gh(x, t)2

]
= 0

⇒ hi,j
ui,j − ui, j − 1

ζ
+ui,j

hi,j − hi,j−1
ζ

+

2hi,jui,j
ui+1,j − ui− 1, j

2δ
+ u2i,j

hi+1,j − hi−1,j
2δ

+

ghi,j
hi+1,j − hi−1,j

2δ
= 0

The error indicator checks the amplitude D of the differences between the left and
right hand side of the equations (21) and (22) at (i, j). In this project, for simplicity

all have been subdivided intervals into smaller even intervals if D > ε, where ε is a
pre-specified error tolerance. For example, we insert nine points evenly across [−5, 5].
If the error ε at one of the nine points is bigger than ε, then we subdivide the interval
[−5, 5] into twenty even intervals for a more accurate solution . This project only eval-
uated subdivision across the interval [(i− 1, j), (i, j)] and [(i, j), (i+ 1, j)], such that if
D(i, j) > ε, then this interval would be subdivided into smaller.

Mesh Refinement Results

Figure 14: Graph of h and hu from [1] t = 0

Figure 15: Graph of h and hu using finite difference t = 0

Figure 16: Graph of h and hu from [1] t = 0.5

Figure 17: Graph of h and hu using finite difference t = 0.5

Figure 18: Graph of h and hu from [1] t = 1

Figure 19: Graph of h and hu using finite difference t = 1

Figure 20: Graph of h and hu from [1] t = 2

Figure 21: Graph of h and hu using finite difference t = 2

Figure 22: Graph of h and hu from [1] t = 3

Figure 23: Graph of h and hu using finite difference t = 3

The accuracy of h and hu profiles at t = 2 shown in Figure 21 and t = 3 shown in
Figure 23 have been improved comparing with those in Figure 20 and Figure 22. The
profiles at t = 3 in Figure 23 are not smooth enough at the lowest and highest points
of waves. This is one of our future research topics.

Conclusion

Strong correlation was observed between the exact solution as used in [1] and the
finite difference method used in this project. The finite difference method demon-
strated itself as having capacity to providing good correlation between the closed form
solution in [1] with the added advantage of providing optional mesh adjustment for
improved accuracy.

Further Work

This work only considers SWE’s in one dimension (1D), applying uniform refinement
of the mesh. Further work would encompass local refinement of the mesh and expand-
ing the finite difference method to 1.5D, 2D and eventually 3D, and applying mesh
refinement to each.

AMSI Experience

A student’s initial university experience provides exposure to academic staff through
lectures and tutorials, but mostly lectures. Students are largely provided information
in bulk to process and learn on an individual basis, at best collaboratively with other
students similarly coming to terms with the same large amounts of information.

My experience and the opportunity to work first hand with senior academic staff has
been refreshing and supportive. It provides insight on the post-graduate environment,
which allows students to continue studies in areas of interest within a supportive en-
vironment.

I thank AMSI and CSU for the opportunity to work on this project, with special
thanks to my supervisor.

References

[1] R. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts
in Applied Mathematics, (2004), Cambridge University Press.

[2] Sudi Mungkasi and Stephen Roberts, Adaptive finite volume methods for the
shallow water equations, Department of Mathematics, Australian National Uni-
versity, A presentation in the 16th CTAC Conference Queensland University of
Technology, 23-26 September 2012.

[3] John H. Mathews, Numerical Methods For Mathematics, Science and Engineering,
Prentice Hall International Editions, 1992.

[4] Mahir Rasulov, Zafer Aslan and Ozkan Pakdill, Finite differences method for shall
water equations in a class of discontinuous functions Department of Mathemat-
ics and Computing, Beykent University, Buykeekmece, Istanbul 34900, Turkey
ELSEVIER Applied Mathematics and Computation 160 (2005) 343-353

[5] Sudi Mungkasi and Stephen G. Roberts, Behaviour of the numerical entropy
production of the one-and-a-half-dimensional shallow water equations, 2 February,
2013

Appendix
The following matlab program is the implementation of the generalization of the
above calculations for N=4 to any integer N .

Matlab Code for verification of the finite difference solution for u(x, t) and
h(x, t)

% Finite difference method for shallow water equations
% N+1: total number of points in interval [-5, 5] including the two ends, left and right
% left end x1 = −5, and right end x(N + 1) = 5
% unknowns: u[2 : N] the velocity, h[2 : N] the depth of water
%
% Boundary conditions: u(1, t) = u(N + 1, t) = 0; h(1, t) = h(N + 1, t) = 1 where
t=time
%
% Initial conditions:h(x, 0) = 1 + 2/5 ∗ exp(−5 ∗ x2), u(x, 0) = 0
%
% delta: equal space step = (5− (−5))/N
% zeta: time step size
% Dimension of coefficient matrix A: 2N × 2N , b: 2N × 1 in Ay = b, x = [uh]
%
clear;
N = 1000; % number of steps in space
zeta = 0.01; % time step size
M = 300; % number of steps in time
% draw profile at t = 0; t = 0.5; t = 1; t = 2 and t = 3, the same as [1]

g = 1; % gravitational constant, the same as [1]
delta = 10/N ;
u(:, :) = zeros(N + 1,M); % create space for velocity
h(:, :) = zeros(N + 1,M); % creat space for height
x = −5 : delta : 5; % space step and range
u(1, :) = 0;u(N + 1, :) = 0; % velocity boundary conditions
u(:, 1) = 0; %
h(1, :) = 1; h(N + 1, :) = 1; % height boundary conditions
% initial displacement conditions
for k = 2 : N
h(k, 1) = 1 + 2/5 ∗ exp(−5 ∗ x(k)2); %Initial conditions
end
% matrices for solving A = zeros(2 ∗ (N − 1), 2 ∗ (N − 1)); b = zeros(2 ∗ (N − 1), 1);

for j = 2 : M
A(1, N) = 2 ∗ delta;A(1, N + 1) = zeta ∗ u(2, j − 1);
A(1, 2) = zeta ∗ h(2, j − 1);

%the first equation fori = 1 on page 5
b(1, 1) = 2 ∗ delta ∗ h(2, j − 1) + zeta ∗ u(2, j − 1) ∗ h(1, j) + zeta ∗ h(2, j − 1) ∗ u(1, j);
A(2, 1) = 2 ∗ delta ∗ h(2, j − 1);
A(2, 2) = zeta ∗ u(2, j − 1) ∗ h(2, j − 1);
%the second equation for i=1 on page 5
A(2, N + 1) = zeta ∗ g ∗ h(2, j − 1);
b(2, 1) = 2 ∗ delta ∗ h(2, j − 1) ∗ u(2, j − 1) + zeta ∗ u(2, j − 1) ∗ h(2, j − 1) ∗ u(1, j) +
zeta ∗ g ∗ h(2, j − 1) ∗ h(1, j);
A(2 ∗N − 3, 2 ∗N − 2) = 2 ∗ delta;
A(2 ∗N − 3, N − 2 +N − 1) = −zeta ∗ u(N, j − 1);
A(2 ∗N − 3, N − 1− 1) = −zeta ∗ h(N, j − 1);
%the first equation for i=3 on page 5
b(2∗N −3, 1) = 2∗delta∗h(N, j−1)−zeta∗u(N, j−1)∗h(N +1, j)−zeta∗h(N, j−
1) ∗ u(N + 1, j); A(2 ∗N − 2, N − 1) = 2 ∗ delta ∗ h(N, j − 1);
A(2 ∗N − 2, N − 1− 1) = −zeta ∗ u(N, j − 1) ∗ h(N, j − 1);
A(2 ∗N − 2, N − 2 +N − 1) = −zeta ∗ g ∗ h(N, j − 1);
%the second equation for i=3 on page 5
b(2 ∗N − 2, 1) = 2 ∗ delta ∗ h(N, j − 1) ∗ u(N, j − 1)− zeta ∗ u(N, j − 1) ∗ h(N, j − 1) ∗
u(N + 1, j)− zeta ∗ g ∗ h(N, j − 1) ∗ h(N + 1, j);
for i = 3 : N − 1
A(2 ∗ i− 3, N − 2 + i) = 2 ∗ delta;
A(2 ∗ i− 3, N − 2 + i+ 1) = zeta ∗ u(i, j − 1);
A(2 ∗ i− 3, N − 2 + i− 1) = −zeta ∗ u(i, j − 1);
A(2 ∗ i− 3, i+ 1− 1) = zeta ∗ h(i, j − 1);
A(2 ∗ i− 3, i− 1− 1) = −zeta ∗ h(i, j − 1);
%the first equation fori = 2 on page 5
b(2 ∗ i− 3, 1) = 2 ∗ delta ∗ h(i, j − 1);
A(2 ∗ i− 2, i− 1) = 2 ∗ delta ∗ h(i, j − 1);
A(2 ∗ i− 2, i+ 1− 1) = zeta ∗ u(i, j − 1) ∗ h(i, j − 1);
A(2 ∗ i− 2, i− 1− 1) = −zeta ∗ u(i, j − 1) ∗ h(i, j − 1);
A(2 ∗ i− 2, N − 2 + i+ 1) = zeta ∗ g ∗ h(i, j − 1);
A(2 ∗ i− 2, N − 2 + i− 1) = −zeta ∗ g ∗ h(i, j − 1);
%the second equation for i = 2 on page 5
b(2 ∗ i− 2, 1) = 2 ∗ delta ∗ h(i, j − 1) ∗ u(i, j − 1); end
% solving y=A\ b;
% applying the solution to the velocity and height spaces
u(2 : N, j) = y(1 : N − 1);h(2 : N, j) = y(N : 2 ∗N − 2);

end

figure
subplot(1,2,1); plot(x, h(:, 1),′ b−′);
title(’h at t=0’);
axis([-5 5 0.5 1.5]);
subplot(1,2,2); plot(x,h(:,1).*u(:,1),’r-’);
title(’h*u at t=0’);
axis([-5 5 -0.5 0.5]);

figure
subplot(1,2,1); plot(x,h(:,50),’b-’);
title(’h at t=0.5’);
axis([-5 5 0.5 1.5]);
subplot(1,2,2); plot(x,h(:,50).*u(:,50),’r-’);
title(’h*u at t=0.5’);
axis([-5 5 -0.5 0.5]);

figure
subplot(1,2,1); plot(x,h(:,100),’b-’);
title(’h at t=1’);
axis([-5 5 0.5 1.5]);
subplot(1,2,2); plot(x,h(:,100).*u(:,100),’r-’);
title(’h*u at t=1’);
axis([-5 5 -0.5 0.5]);

figure
subplot(1,2,1); plot(x,h(:,200),’b-’);
title(’h at t=2’);
axis([-5 5 0.5 1.5]);
subplot(1,2,2); plot(x,h(:,200).*u(:,200),’r-’);
title(’h*u at t=2’);
axis([-5 5 -0.5 0.5]);

figure
subplot(1,2,1); plot(x,h(:,300),’b-’);
title(’h at t=3’);
axis([-5 5 0.5 1.5]);
subplot(1,2,2); plot(x,h(:,300).*u(:,300),’r-’);
title(’h*u at t=3’);
axis([-5 5 -0.5 0.5]);

MatLab Code for Mesh Refinement

forj = 2 : M
fori = 2 : N
Error1(i−1, j−1) = (h(i, j)−h(i, j−1))/zeta+u(i, j)∗ (h(i+1, j)−h(i−1, j))/(2∗
delta) + h(i, j) ∗ (u(i+ 1, j)− u(i− 1, j))/(2 ∗ delta);
Error2(i− 1, j − 1) = h(i, j) ∗ (u(i, j)− u(i, j − 1))/zeta + u(i, j) ∗ (h(i, j)− h(i, j −
1))/zeta+ 2 ∗ h(i, j) ∗ u(i, j) ∗ (u(i+ 1, j)− u(i− 1, j))/(2 ∗ delta) + (u(i, j))2 ∗ (h(i+
1, j)− h(i− 1, j))/(2 ∗ delta) + g ∗ h(i, j) ∗ (h(i+ 1, j)
−h(i− 1, j))/(2 ∗ delta);
end
end
epsilon = 10(− 2); % tolerance
error = max(max(max(abs(Error1))),max(max(abs(Error2))))
iferror > epsilon
str = sprintf(′PleaseselectadifferentNorasmallertimesteplessthan
%dandrunthisprogramagain.′, zeta);
disp(str);

