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Random walk models based on an exclusion process with contact effects are often used to represent collective
migration where individual agents are affected by agent-to-agent adhesion. Traditional mean-field representations
of these processes take the form of a nonlinear diffusion equation which, for strong adhesion, does not predict the
averaged discrete behavior. We propose an alternative suite of mean-field representations, showing that collective
migration with strong adhesion can be accurately represented using a moment closure approach.

9

10

11

12

13

DOI: 10.1103/PhysRevE.00.001900 PACS number(s): 87.17.Rt, 87.17.Jj14

I. INTRODUCTION15

Microscopic transport processes modulated by adhesion16

are important for many applications including the study of17

biomolecules [1], granular media [2], and biological cells18

[3,4]. For these applications it is essential to understand how19

individual-level details of the adhesion mechanism lead to20

population-level properties that govern system-wide behavior.21

Therefore, accurate mean-field models of these mechanisms22

are essential. Here, we study a discrete motility mechanism23

based on an exclusion process [5] with contact effects. These24

models have been used to study the migration of glioma25

cells [6,7], breast cancer cells [8], and wound healing processes26

[9]. Anguige and Schmieser [10] were the first to derive a27

mean-field description of such a discrete model, with others28

reported subsequently [6,8,11,12]. These previous studies29

reported mean-field representations in the form of a nonlinear30

diffusion partial differential equation (pde) [12].31

The form of the nonlinear diffusivity function reflects32

the physical behavior in the discrete model [10–12]. When33

contact enhances migration, the nonlinear diffusivity func-34

tion is always positive [6,11,13,14]. When contacts reduce35

migration (i.e., adhesion), the nonlinear diffusivity function36

can become negative when contact effects dominate [8,10,11].37

The transition from positive to negative nonlinear diffusivity38

is associated with clustering in the discrete simulations [13];39

under these conditions existing mean-field models do not40

predict the average behavior of the discrete process [6,11,13].41

For example, both Deroulers et al. [6] and Fernando et al.42

[11] showed that the traditional mean-field pde fails to make43

accurate predictions when contact effects became sufficiently44

strong. Fernando et al. [11] provided further insight by45

proposing a heuristic measure to predict the parameter regime46

where the mean-field pde was either accurate or inaccurate.47

Although insightful, this previous study provided no means of48

making accurate mean-field predictions when contact effects49

were strong.50

Currently, it is impossible to quantify how and why the51

traditional pde representation fails to predict the averaged52

discrete behavior as these models provide no way of examining53

the validity of the assumptions underlying the traditional54

mean-field pde. Here we address these issues by showing that55

an adhesive motility mechanism can be described by a suite56

of three mean-field models. We show that the traditional pde 57

invokes two key assumptions, namely, 58

(1) that effects of O(�3) and smaller are neglected in the 59

limit that � → 0, where � is the lattice spacing, and 60

(2) that the occupancy status of lattice sites are assumed to 61

be independent so that correlation effects are ignored. 62

Two alternative mean-field models are developed that relax 63

both these assumptions independently. Comparing averaged 64

discrete simulation results to the predictions of the suite of 65

three mean-field models highlights the role of correlation 66

effects and shows that it is possible to make accurate mean- 67

field predictions with strong adhesion using a moment closure 68

approach. 69

II. DISCRETE MECHANISM 70

We consider a one-dimensional lattice, with spacing �. 71

Sites are indexed by l, and have location x = l�. Time 72

is uniformly discretized with time step τ , and a random 73

sequential update method is used to simulate the process [15]. 74

During each time step, agents attempt to step to nearest 75

neighbor sites provided that the target site is vacant. Motility 76

events that would place an agent on an occupied site are 77

aborted. Motility events are regulated by contact effects that 78

represent agent-to-agent adhesion [10] by altering the motility 79

using an adhesion parameter σ ∈ [−1,1]. For example, if we 80

consider the schematic illustration in Fig. 1, the agent at site 81

l − 1 would attempt to move to the vacant site l − 2 with 82

probability (1 − σ )/2 per time step when site l is occupied. 83

Alternatively, this event would occur with probability 1/2 84

per time step if site l were vacant. Setting σ > 0 represents 85

adhesion, whereas setting σ < 0 represents repulsion [11]. 86

III. MEAN-FIELD REPRESENTATIONS 87

We define the lattice variable, φl ∈ {0l ,Cl}, to represent 88

the state of the lth site, so that φl = 0l indicates that site 89

l is vacant and φl = Cl indicates that site l is occupied. 90

Averaging the occupancy of each site over many identically 91

prepared realizations gives cl ∈ [0,1] [6,11]. In our notation 92

upper case Cl represents the occupancy of the lth site in 93

a single realization, whereas lower case cl represents the 94

average occupancy, where the average is constructed over a 95
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1/21/2(1-σ)/2 0

FIG. 1. (Color online) The random walk takes place on a one-
dimensional lattice where each site can be occupied by, at most, one
agent. An isolated agent steps in the positive or negative x direction
with probability 1/2 per computational time step. For example, the
agent at site l + 3 would step to site l + 2 with probability 1/2,
or to l + 4 with probability 1/2. Contact effects alter the motility
probability; for example, in the configuration shown, the agent at
site l − 1 would step to l − 2 with probability (1 − σ )/2, where σ ∈
[−1,1] represents the contact effect. The agent at site l − 1 would
step to site l with probability 0 since the target site is occupied.

large number of identically prepared realizations of the same96

process. We now introduce three ways to approximate cl by97

making different assumptions about the underlying discrete98

process.99

A. Partial differential equation representation100

To connect the discrete mechanism with a pde, we form a101

discrete conservation statement describing δcl , the change in102

average occupancy of site l per time step. The conservation103

equation can be written as104

δcl = 1
2 [cl−1(1 − cl)(1 − σcl−2) + cl+1(1 − cl)(1 − σcl+2)]

− 1
2 [cl(1 − cl − 1)(1 − σcl+1)

+ cl(1 − cl+1)(1 − σcl − 1)], (1)

where positive terms on the right of Eq. (1) represent events that105

would place agents at site l, and negative terms represent events106

that would remove agents from site l. The discrete conservation107

statement is related to a pde as � → 0 and τ → 0, and cl is108

identified as a continuous variable c(x,t) [6,10,11]. Expanding109

all terms in Eq. (1) in a truncated Taylor series about site l,110

neglecting terms of O(�3) and higher [6,10,11], and dividing111

the resulting expression by τ , we take limits as � → 0 and112

τ → 0 with the ratio (�2/τ ) held constant [16] to obtain113

∂c

∂t
= D0

∂

∂x

[
D(c)

∂c

∂x

]
, (2)

where D0 = lim�,τ→0(�2)/(2τ ) is the free-agent diffusivity,114

and the nonlinear diffusivity function is given by [10,11]115

D(c) = 1 − σc(4 − 3c). (3)

Two key assumptions lead to Eq. (2). First, we assume terms116

of O(�3) and smaller can be neglected. Second, we assume117

the average occupancies of sites to be independent so that, for118

example, the net averaged probability of a transition from site l119

to l + 1 is proportional to (1 − cl+1)(1 − σcl−1). This implies120

that the occupancy of sites l + 1 and l − 1 are independent,121

which, in general, is untrue [17,18]. Without further analysis,122

it is impossible to deduce how these two assumptions control123

the net error associated with Eq. (2). We now introduce two124

alternative mean-field models that systematically relax both125

assumptions.126

B. Ordinary differential equation representation 127

To avoid neglecting terms of O(�3) and smaller as � → 0, 128

we retain the spatial structure of the random walk in Eq. (1) 129

by identifying discrete values of cl with a continuous variable 130

cl(t). Dividing Eq. (1) by τ , and considering the limit as τ → 0, 131

gives a system of ordinary differential equations (odes) 132

dcl

dt
= 1

2
[cl−1(1 − cl)(1 − σcl−2) + cl+1(1 − cl)(1 − σcl+2)]

− 1

2
[cl(1 − cl−1)(1 − σcl+1) + cl(1 − cl+1)(1 − σcl−1)],

(4)

for each site l. We note that Eq. (4) still makes the independence 133

assumption, and we now develop a third mean-field model that 134

removes this assumption. 135

C. Moment closure representation 136

We use k-point distribution functions, ρ(k) (k = 1,2,3, . . . ), 137

to describe the averaged occupancies of k tuplets of lattice sites 138

[17,19,20]. For k = 1, the distribution function is a univariate 139

distribution describing the average density of agents on site l so 140

that ρ(1)(Cl) = cl . For k = 2, the bivariate distribution function 141

can be defined in terms of correlation functions [17,19], which 142

can be written as 143

F (l,m) = ρ(2)(Cl,Cm)

ρ(1)(Cl)ρ(1)(Cm)
, (5)

where l �= m. These correlation functions allow us to relax 144

the independence assumptions inherent in Eqs. (2) and (4). 145

Setting F (l,m) ≡ 1 indicates that the occupancies of sites l 146

and m are independent. Instead, we avoid this assumption by 147

allowing F (l,m) to evolve as part of the solution [17]. With 148

these definitions we have 149

dcl

dt
= 1

2
[ρ(3)(0l−2,Cl−1,0l) + (1 − σ )ρ(3)(Cl−2,Cl−1,0l)]

+ 1

2
[ρ(3)(0l ,Cl+1,0l+2) + (1 − σ )ρ(3)(0l ,Cl+1,Cl+2)]

− 1

2
[ρ(3)(0l−1,Cl,0l+1) − (1 − σ )ρ(3)(0l−1,Cl,Cl+1)]

− 1

2
[ρ(3)(0l−1,Cl,0l+1) − (1 − σ )ρ(3)(Cl−1,Cl,0l+1)].

(6)

Positive terms on the right of Eq. (6) represent events that 150

would place an agent at site l whereas negative terms on 151

the right of Eq. (6) represent events that would remove an 152

agent from site l. To simplify Eq. (6) we apply a summation 153

rule [17] to rewrite the unbiased ρ(3) terms as equivalent ρ(2)
154

terms. The Kirkwood superposition approximation (KSA) is 155

then used to rewrite the remaining ρ(3) terms as combinations 156

of ρ(2) terms. The KSA is a moment closure approximation 157

that has been used in many applications, including ecology 158

[21–23], physical chemistry [24], disease biology [25,26], and 159

diffusion-mediated reactions [27]. The KSA can be written as 160

ρ(3)(φl,φm,φn) = ρ(2)(φl,φm)ρ(2)(φl,φn)ρ(2)(φm,φn)

ρ(1)(φl)ρ(1)(φm)ρ(1)(φn)
. (7)
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Combining Eq. (7) with the simplified version of Eq. (6) gives161

dcl

dt
= 1

2
[cl+1 − 2c2 + cl−1] − σ

2(1 − cl)
{cl−2cl−1[1 − clF (l − 2,l)][1 − clF (l − 1,l)]F (l − 2,l − 1)}

− σ

2(1 − cl)
{cl+1cl+2[1 − clF (l,l + 1)][1 − clF (l,l + 2)]F (l + 1,l + 2)} + σ

2(1 − cl−1)
{clcl+1[1 − cl−1F (l − 1,l)]

× [1 − cl−1F (l − 1,l + 1)]F (l,l + 1)} + σ

2(1 − cl+1)
{cl−1cl[1 − cl+1F (l − 1,l + 1)][1 − cl+1F (l,l + 1)]F (l,l − 1)}.

(8)

To solve Eq. (8) we require a model for the evolution of F (l,l + 1) and F (l,l + 2) which are correlation functions quantifying the
degree to which the occupancy of the pairs of sites, (l,l + 1) and (l,l + 2), are correlated. To solve for these terms we consider
the time rate of change of certain two-point distribution functions which are related to higher order distribution functions
leading to an infinite system of equations that we close using the KSA [17,18]. For example, the evolution of ρ(2)(Cl,Cl+1) is
given by

dρ(2)(Cl,Cl+1)

dt
= 1

2
[ρ(4)(0l−2,Cl−1,0l ,Cl+1) + (1 − σ )ρ(4)(Cl−2,Cl−1,0l ,Cl+1)] + 1

2
[ρ(4)(Cl,0l+1,Cl+2,0l+3)

+ (1 − σ )ρ(4)(Cl,0l+1,Cl+2,0l+3)] − 1

2
[(1 − σ )ρ(3)(0l−1,Cl,Cl+1) + (1 − σ )ρ(3)(Cl,Cl+1,0l+2)]. (9)

To simplify Eq. (9) we apply a summation rule [17] to rewrite the unbiased ρ(4) terms as equivalent ρ(3) terms. Then, we use
the summation rule again to write some of the resulting ρ(3) terms as equivalent expressions depending only on ρ(2) terms. This
gives us

dρ(2)(Cl,Cl+1)

dt
= 1

2
[ρ(2)(Cl−1,Cl+1) + ρ(2)(Cl,Cl+2) − 2ρ(2)(Cl,Cl+1)] − σ

2
[ρ(4)(Cl−2,Cl−1,0l ,Cl+1) + ρ(4)(Cl,0l+1,Cl+2,Cl+3)]

+ σ

2
[ρ(3)(0l−1,Cl,Cl+1) + ρ(3)(Cl,Cl+1,0l+2)]. (10)

We now use the KSA to reduce the ρ(3) and ρ(4) terms in Eq. (10). For the ρ(4) terms we use [24]

ρ(4)(φl,φm,φn,φo) = ρ(3)(φl,φm,φn)ρ(3)(φl,φm,φo)ρ(3)(φl,φn,φo)ρ(3)(φm,φn,φo)ρ(1)(φl)ρ(1)(φm)ρ(1)(φn)ρ(1)(φo)

ρ(2)(φl,φm)ρ(2)(φl,φn)ρ(2)(φl,φo)ρ(2)(φm,φn)ρ(2)(φm,φo)ρ(2)(φn,φo)
. (11)

The ρ(3) terms appearing in Eq. (11) can then be reduced into ρ(2) terms using Eq. (7).
At this stage there are two possible ways to simplify Eq. (10). Either we
(1) introduce the KSA directly into Eq. (10) to express the ρ(3) and ρ(4) terms as ρ(2) terms, or
(2) apply the summation rule again to further simplify those terms in Eq. (10) that are proportional to σ .

Following the second approach we obtain

dρ(2)(Cl,Cl+1)

dt
= 1

2
[ρ(2)(Cl−1,Cl+1) + ρ(2)(Cl,Cl+2) − 2ρ(2)(Cl,Cl+1)] − σ

2
[ρ(2)(Cl−1,Cl+1) + ρ(2)(Cl,Cl+2) − 2ρ(2)(Cl,Cl+1)]

+ σ

2
[ρ(4)(0l−2,Cl−1,0l ,Cl+1) + ρ(4)(Cl,0l+1,Cl+2,0l+3)]. (12)

We apply the KSA to Eq. (12) and rewrite everything in terms of the correlation functions to obtain

dF (l,l + 1)

dt
= −F (1,1 + 1)

[
dcl+1

dt

1

cl+1
+ dcl

dt

1

cl

]
+ 1

2

[
cl−1

cl

F (l − 1,l + 1) + cl+2

cl+1
F (l,l + 2) − 2F (l,l + 1)

]

− σ

2

[
cl−1

cl

F (l − 1,l + 1) + cl+2

cl+1
F (l,l + 2) − 2F (l,l + 1)

]

+ σ

2

[
cl−1

cl(1 − cl−2)2(1 − cl)2
F (l − 1,l + 1) [1 − cl−2 − cl + clcl−2F (l − 2,l)]

× [1 − cl−2F (l − 2,l − 1)] [1 − cl−2F (l − 2,l + 1)] [1 − clF (l − 1,l)] [1 − clF (l,l + 1)]

]

+ σ

2

[
cl+2

cl+1(1 − cl+1)2(1 − cl+3)2
F (l,l + 2)[1 − cl+1 − cl+3 + cl+1cl+3F (l + 1,l + 3)]

× [1 − cl+1F (l,l + 1)][1 − cl+3F (l,l + 3)][1 − cl+1F (l + 1,l + 2)][1 − cl+3F (l + 2,l + 3)]

]
. (13)
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To solve the moment closure model we use the same initial162

condition, c(x,0), as in the discrete simulations and set the163

initial values of F (l,m) ≡ 1, for all m = l + 1,l + 2,l + 3, . . .164

and for all all lattice sites l [18]. While it is possible, in165

principle, to solve F (l,m) for all values of m to cover the166

periodic domain, it is more practical to solve a truncated167

system F (l,m) for m = l + 1,l + 2, . . . ,M assuming that168

F (l,M + 1) ≡ 1. We did this iteratively by solving for cl ,169

F (l,l + 1) and setting F (l,l + 2) ≡ 1, and then separately170

solving for cl , F (l,l + 1), F (l,l + 2) and setting F (l,l + 3) ≡171

1. These two approaches yielded results for c(x,t) that were172

indistinguishable. Therefore, we take the simplest possible173

approach and report results corresponding to the solution of174

cl and F (l,l + 1) with F (l,l + 2) ≡ 1. We also remark that,175

as we pointed out earlier, it is possible to simplify Eq. (10)176

in an alternative way by applying the KSA directly to the ρ(3)
177

and ρ(4) terms in that equation without using the summation178

rule. For completeness, we also resolved all problems in this179

work using the alternative expression for dF (l,l + 1)/dt and180

found that both approaches yielded c(x,t) profiles that were181

indistinguishable.182

IV. RESULTS AND DISCUSSION183

We consider a lattice with 1 � x � 1000, and an initial184

distribution of agents given by185

c(x,0) =

⎧⎪⎨
⎪⎩

0.1, 1 � x < 480

1.0, 481 � x � 520

0.1, 521 < x � 1000 .

(14)

Periodic boundary conditions are imposed, and simulations186

are performed for a range of σ including (−1.00,−0.95,187

−0.90, . . . ,0.90,0.95,1.00). In each case we estimate the188

density profile using 1000 identically prepared realizations.189

Results in Figs. 2 and 3 are given at t = 1000 and t = 5000, re-190

spectively. Snapshots are shown for modest (σ = 0.65), strong191

(σ = 0.80), and extreme (σ = 0.95) adhesion. We show 20192

identically prepared realizations of the same stochastic process193

which illustrate the effects of adhesion since clustering occurs194

when adhesion dominates [Figs. 2(b) and 3(b)]. The density195

profiles in the central region of the lattice are compared with196

the solutions of Eqs. (2), (4), and (8). The numerical solution197

of Eq. (2) is obtained with a finite difference approximation198

with constant grid spacing δx and implicit Euler stepping with199

constant time steps δt [28]. Picard linearization, with absolute200

error tolerance ε, is used to solve the resulting nonlinear201

algebraic systems. The numerical solutions of Eqs. (4) and (8)202

are obtained using a fourth order Runge-Kutta method with203

constant time step δt [18]. All numerical results presented in204

this paper are obtained using values of δx, δt , and ε chosen205

to be sufficiently small so that the numerical results are grid206

independent.207

For all cases of extreme (σ = 0.95) and strong (σ = 0.80)208

adhesion shown in Figs. 2 and 3, the solution of Eq. (2)209

is discontinuous [Figs. 2(d), 2(j), 3(d), and 3(j)]. These210

discontinuities are associated with D(c) becoming negative for211

a region of c [10,11,29]. In this regime the pde fails to predict212

the discrete profiles which appear to be smooth. For modest213

(σ = 0.65) adhesion the solution of Eq. (2) remains smooth214

since D(c) > 0 [Figs. 2(p) and 3(p)]. For modest adhesion 215

the accuracy of Eq. (2) is much higher relative to the strong 216

(σ = 0.80) and extreme (σ = 0.95) adhesion cases. Although 217

Eq. (2) performs better for σ = 0.65, we still observe that 218

Eq. (2) slightly overestimates the peak density at t = 1000 219

[Fig. 2(p)]. 220

When D(c) becomes negative for a region of c, the solution 221

of Eq. (2) is qualitatively different from the solution when 222

D(c) is always positive. When D(c) is always positive, 223

Eq. (2) is uniformly parabolic and satisfies the usual maximum 224

principle. This means that the solution is bounded by the initial 225

condition so that, in our case, c(x,t) � 1 for all t > 0 [29,30]. 226

Conversely, when D(c) becomes negative for a region of c, 227

Eq. (2) is not uniformly parabolic and does not satisfy the 228

usual maximum principle. This means that c(x,t) may become 229

greater than the initial condition as the profile evolves [Figs. 230

2(d) and 3(d)]. Similar behavior has been observed previously 231

in a different context. DiCarlo [31] used a nonlinear diffusion 232

equation, called Richards’ equation, to study fluid flow through 233

a partially saturated porous medium. This previous work 234

showed that the infiltration front was monotone and never 235

increased above the long-term saturation level whenever the 236

nonlinear diffusivity function was always positive. Similar to 237

our results, DiCarlo showed that when the nonlinear diffusivity 238

function contained a negative region, the infiltration front 239

became nonmonotone, and the saturation level at the leading 240

edge increased above the long-term saturation level meaning 241

that the governing equation no longer satisfied the usual 242

maximum principle. 243

Comparing the averaged discrete profiles and the solution 244

of Eq. (4) indicates that this model predicts smooth profiles; 245

however these profiles do not accurately predict the discrete 246

density data for strong (σ = 0.80) and extreme (σ = 0.95) 247

adhesion [Figs. 2(e), 2(k), 3(e), and 3(k)]. Alternatively, the 248

solution of Eq. (8) predicts smooth profiles that are accurate, 249

even for strong (σ = 0.80) and extreme (σ = 0.95) adhesion 250

[Figs. 2(f), 2(l), 3(f), and 3(l)]. These results provide us with a 251

qualitative indication of the relative roles of the assumptions 252

underlying Eq. (2). We see that Eq. (4), without truncation, 253

provides a modest improvement over Eq. (2), whereas Eq. (8), 254

with no truncation or independence assumptions, provides a 255

major improvement relative to Eq. (2). This indicates that 256

the key assumption leading to the failure of Eq. (2) is the 257

independence assumption. 258

The moment closure model Eq. (8) also provides us with 259

a quantitative measure of the role of correlation effects 260

through the correlation functions, shown in Figs. 2(s), 2(t), 261

3(s), and 3(t). Our results show that F (l,l + 1) increases 262

with σ , confirming that correlation effects increase with 263

increasing adhesion, and we see that the continuum F (l,l + 1) 264

profiles predict the discrete values quite well at both t = 1000 265

[Fig. 2(s)] and t = 5000 [Fig. 3(s)]. We also present discrete 266

estimates of F (l,l + 2) [Figs. 2(t) and 3(t)] which are neglected 267

in our moment closure results since we set F (l,l + 2) = 1. 268

Comparing profiles of F (l,l + 1) and F (l,l + 2) show that 269

nearest neighbor correlation effects are more pronounced than 270

next nearest neighbor correlation effects. Our neglect of next 271

nearest neighbor correlation effects in the moment closure 272

model appears reasonable given the quality of the match 273

between the discrete data and the solution of Eq. (8). 274
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FIG. 2. (Color online) Mean-field and discrete results for a range of adhesive strengths: (a)–(f) extreme adhesion (σ = 0.95), (g)–(l) strong
adhesion (σ = 0.80), and (m)–(r) modest adhesion (σ = 0.65). (a), (b); (g), (h); (m), (n) For each adhesive strength, two snapshots of the
discrete process are shown at t = 0 and t = 1000, respectively. All discrete results correspond to � = τ = 1; simulations are performed
on a lattice with 1 � x � 1000 and periodic boundary conditions. Discrete snapshots show 20 identically prepared realizations of the same
one-dimensional process in the region 401 � x � 600. (d), (j), (p) Comparisons of averaged density profiles (red), the initial condition (black
dashed), and the solution of Eq. (2) (blue). (e), (k), (q) Comparisons of averaged density profiles (red), the initial condition (black dashed),
and the solution of Eq. (4) (blue). (f), (l), (r) Comparisons of averaged density profiles (red), the initial condition (black dashed), and the
solution of Eq. (8) (blue). All discrete simulation results and mean-field solutions were obtained using periodic boundary conditions. (c),
(i), (o) Show the nonlinear diffusivity function, D(c) = 1 − σc(4 − 3c), associated with Eq. (2). Results for extreme (σ = 0.95) and strong
(σ = 0.80) adhesion show that D(c) becomes negative in some interval c ∈ [c1,c2] while results for the modest adhesion (σ = 0.65) show that
D(c) > 0 for all c ∈ [0,1]. (s), (t) Continuum (blue) and discrete (red) profiles of F (l,l + 1) and F (l,l + 2), respectively. In each plot, profiles
of the correlation function are given for extreme (σ = 0.95), strong (σ = 0.80), and modest adhesion (σ = 0.65) with the arrow showing the
direction of increasing σ . (u) The error profile E as a function of the adhesion parameter σ ∈ [−1,1] at t = 1000. Error profiles are given for
Eqs. (2) (blue dashed), (4) (blue), and (8) (red). All numerical solutions of Eq. (2) correspond to δx = 0.2, δt = 0.01 and ε = 1 × 10−6. All
numerical solutions of Eqs. (4) and (8) correspond to δt = 0.05.
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FIG. 3. (Color online) Mean-field and discrete results for a range of adhesive strengths: (a)–(f) extreme adhesion (σ = 0.95), (g)–(l) strong
adhesion (σ = 0.80), and (m)–(r) modest adhesion (σ = 0.65). (a), (b); (g), (h); (m), (n) For each adhesive strength, two snapshots of the
discrete process are shown at t = 0 and t = 5000, respectively. All discrete results correspond to � = τ = 1; simulations are performed
on a lattice with 1 � x � 1000 and periodic boundary conditions. Discrete snapshots show 20 identically prepared realizations of the same
one-dimensional process in the region 401 � x � 600. (d), (j), (p) Comparisons of averaged density profiles (red), the initial condition (black
dashed), and the solution of Eq. (2) (blue). (e), (k), (q) Comparisons of averaged density profiles (red), the initial condition (black dashed),
and the solution of Eq. (4) (blue). (f), (l), (r) Comparisons of averaged density profiles (red), the initial condition (black dashed), and the
solution of Eq. (8) (blue). All discrete simulation results and mean-field solutions were obtained using periodic boundary conditions. (c),
(i), (o) Show the nonlinear diffusivity function, D(c) = 1 − σc(4 − 3c), associated with Eq. (2). Results for extreme (σ = 0.95) and strong
(σ = 0.80) adhesion show that D(c) becomes negative in some interval c ∈ [c1,c2] while results for the modest adhesion (σ = 0.65) show that
D(c) > 0 for all c ∈ [0,1]. (s), (t) Continuum (blue) and discrete (red) profiles of F (l,l + 1) and F (l,l + 2), respectively. In each plot, profiles
of the correlation function are given for extreme (σ = 0.95), strong (σ = 0.80), and modest adhesion (σ = 0.65) with the arrow showing the
direction of increasing σ . (u) The error profile E as a function of the adhesion parameter σ ∈ [−1,1] at t = 5000. Error profiles are given for
Eqs. (2) (blue dashed), (4) (blue), and (8) (red). All numerical solutions of Eq. (2) correspond to δx = 0.2, δt = 0.01, and ε = 1 × 10−6. All
numerical solutions of Eqs. (4) and (8) correspond to δt = 0.05.
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To quantify the accuracy of Eqs. (2), (4), and (8), we use275

an error norm given by276

E = 1

100

l=550∑
l=451

[cl − MF (x,t)]2, (15)

where MF (x,t) is the density predicted by one of Eqs. (2)277

and (4) or (8), and cl is the average density at site l from278

the averaged discrete simulations. We calculate E using sites279

in the region 451 � l � 550 since the details of the evolved280

density profiles in Figs. 2 and 3 are localized in this region.281

Figures 2(u) and 3(u) compare the accuracy of Eqs. (2), (4), and282

(8) for the entire range of the adhesion parameter σ ∈ [−1,1],283

showing that the error varies over two orders of magnitude.284

For all cases of repulsive motion (σ < 0) and mildly adhesive285

motion (0 < σ < 0.5), Eqs. (2), (4), and (8) perform similarly;286

we see that the solution of each mean-field model accurately287

matches the discrete profiles. This is is consistent with288

previous research [11]. For modest to extreme adhesion289

(0.50 � σ � 1.0), Eqs. (2) and (4) become very inaccurate,290

while Eq. (8) continues to make accurate predictions for all291

σ ∈ [−1,1].292

Comparing the performance of Eqs (2), (4), and (8) in293

Fig. 2 at t = 1000 with the results in Fig. 3 at t = 5000294

indicates that the same qualitative trends are apparent at both295

time points. The profiles at t = 1000 (Fig. 2) for extreme296

adhesion (σ = 0.95) and strong adhesion (σ = 0.80) show297

that the density profiles have not changed much from the298

initial distribution, while the results for moderate adhesion299

(σ = 0.65) show that the density profile has spread out much300

further along the lattice by t = 1000. The profiles at t = 5000301

(Fig. 3) for strong adhesion (σ = 0.80) show that the density302

profile has spread much further across the lattice, and the303

results for moderate adhesion (σ = 0.65) show that the density304

profile is almost horizontal by t = 5000. Since our work305

is motivated by studying cell migration assays, which are306

typically conducted over relatively short time periods, it is307

appropriate for us to focus on relatively short simulations so308

that we can examine the transient response of the system and309

investigate how the shape of the initial condition changes.310

Our results for extreme adhesion (σ = 0.95) indicate that311

these profiles do not change much during the timescale of312

the simulations whereas our results for strong (σ = 0.80) and313

moderate (σ = 0.65) adhesion show that the profiles change314

dramatically during the timescale of the simulations. It is315

important that we consider this range of behaviors since similar316

observations are often made in cell migration experiments317

where certain cell types do not migrate very far over some time318

periods, whereas other cell types migrate over much larger319

distances during the same time period [32]. One hypothesis320

that might explain these experimental results is that certain321

cell types are affected by cell-to-cell adhesion much more than322

other cell types [32]. The key result of our work is to show323

that the usual mean-field model, given by Eq. (2), is unable324

to describe the discrete data for strong and extreme adhesion325

at any time point. This is significant because many previous326

studies have derived traditional mean-field pde models which327

suffer from the same limitations as Eq. (2). None of these328

previous studies have presented any alternative mean-field329

models that can predict the averaged discrete profiles when 330

contact effects dominate [6,8,11,12,14]. 331

Although all density profiles shown in Figs. 2 and 3 332

correspond to adhesion (σ > 0), we also generated similar 333

profiles over the entire range of the parameter σ ∈ [−1,1] 334

to obtain the error profile in Figs. 2(u) and 3(u). Results for 335

σ < 0 correspond to agent repulsion [11], and the contact 336

effects act to increase the rate at which the density profile 337

smooths with time. In this context, results with σ < 0 are less 338

interesting since D(c) is always positive and agent clustering 339

does not occur. Furthermore, Eq. (2) appears to make accurate 340

predictions for all cases of repulsion. Therefore, we choose to 341

present snapshots and detailed comparisons in Figs. 2 and 3 342

for adhesion cases only (σ > 0). 343

Our comparisons of Eqs (2), (4), and (8) in Figs. 2 and 3 344

were for an initial condition Eq. (14) where the average 345

occupancy of sites was either c(x,0) = 0.1 or c(x,0) = 1.0 346

with a sharp discontinuity between these two values. We 347

chose this initial condition because Eq. (2) is well posed 348

since the initial condition jumps across the region where 349

D(c) is negative. With σ > 0.75, D(c) in Eq. (2) contains 350

a region c ∈ [c1,c2] where D(c) < 0 (0 < c1 < c2 < 1), and 351

it is only possible to solve Eq. (2) when the initial condition 352

is chosen such that c(x,0) is not in the interval [c1,c2] [29]. 353

Had we chosen an initial condition that did not obey these 354

restrictions, Eq. (2) would be ill posed with no solution [29]. 355

For completeness, we now consider a second set of results for 356

a different initial condition given by 357

c(x,0) = 0.1 + 0.9 exp

[−(x − 500)2

400

]
. (16)

This initial condition is Gaussian shaped and accesses all 358

values of 0.1 < c(x,0) < 1. For values of σ > 0.75, this initial 359

condition does not jump across the region where D(c) is 360

negative which means that Eq. (2) is ill posed, and we cannot 361

obtain a solution [13,29]. Regardless of this complication 362

with Eq. (2), we repeated all simulations shown previously 363

in Figs. 2 and 3 with the Gaussian-shaped initial condition, 364

and we report the results in Figs. 4 and 5 at t = 1000 and 365

t = 5000, respectively. 366

Results in Figs. 4 and 5 show the exact same qualitative 367

trends that were illustrated previously in Figs. 2 and 3. For 368

modest adhesion (σ = 0.65) we see that Eqs. (4) and (8) 369

perform similarly and both mean-field models predict the 370

averaged discrete data accurately [Figs. 4(n), 4(o), 5(n), and 371

5(o)]. For strong (σ = 0.80) and extreme adhesion (σ = 0.85), 372

we see that Eq. (4), which neglects correlation effects, is 373

unable to predict the averaged discrete data at either t = 374

1000 or t = 5000 [Figs. 4(d), 4(i), 5(d), and 5(i)] whereas 375

Eq. (8) leads to an accurate mean-field prediction in all cases 376

considered here. Comparing discrete estimates of F (l,l + 1) 377

with those predicted using the moment closure model shows 378

that the moment closure approach captures nearest neighbor 379

correlation effects accurately [Figs. 4(p) and 5(p)], and we 380

see that next nearest neighbor correlation effects are less 381

pronounced than nearest neighbor correlation effects. The 382

differences in the performance of Eqs. (4) and (8) are quantified 383

in terms of the error norm Eq. (15) in Figs. 4(r) and 5(r). 384
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FIG. 4. (Color online) Mean-field and discrete results for a range of adhesive strengths: (a)–(e) extreme adhesion (σ = 0.95), (f)–(j)
strong adhesion (σ = 0.80), and (k)–(o) modest adhesion (σ = 0.65). (a), (b); (f), (g); (k), (l) For each adhesive strength, two snapshots of
the discrete process are shown at t = 0 and t = 1000, respectively. All discrete results correspond to � = τ = 1; simulations are performed
on a lattice with 1 � x � 1000 and periodic boundary conditions. Discrete snapshots show 20 identically prepared realizations of the same
one-dimensional process in the region 401 � x � 600. (d), (i), (n) Comparisons of averaged density profiles (red), the initial condition (black
dashed), and the solution of Eq. (4) (blue). (e), (j), (o) Comparisons of averaged density profiles (red), the initial condition (black dashed), and
the solution of Eq. (8) (blue). All discrete simulation results and mean-field solutions were obtained using periodic boundary conditions. (c),
(h), (m) show the nonlinear diffusivity function, D(c) = 1 − σc(4 − 3c), associated with Eq. (2). Results for extreme (σ = 0.95) and strong
(σ = 0.80) adhesion show that D(c) becomes negative in some interval c ∈ [c1,c2] while results for the modest adhesion (σ = 0.65) show that
D(c) > 0 for all c ∈ [0,1]. (p), (q) Continuum (blue) and discrete (red) profiles of F (l,l + 1) and F (l,l + 2), respectively. In each plot, profiles
of the correlation function are given for extreme (σ = 0.95), strong (σ = 0.80), and modest adhesion (σ = 0.65) with the arrow showing the
direction of increasing σ . (r) The error profile E as a function of the adhesion parameter σ ∈ [−1,1] at t = 1000. Error profiles are given for
Eqs. (4) (blue) and (8) (red). All numerical solutions of Eq. (2) correspond to δx = 0.2, δt = 0.01, and ε = 1 × 10−6. All numerical solutions
of Eqs. (4) and (8) correspond to δt = 0.05.
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FIG. 5. (Color online) Mean-field and discrete results for a range of adhesive strengths: (a)–(e) extreme adhesion (σ = 0.95), (f)–(j)
strong adhesion (σ = 0.80), and (k)–(o) modest adhesion (σ = 0.65). (a), (b); (f), (g); (k), (l) For each adhesive strength, two snapshots of
the discrete process are shown at t = 0 and t = 5000, respectively. All discrete results correspond to � = τ = 1; simulations are performed
on a lattice with 1 � x � 1000 and periodic boundary conditions. Discrete snapshots show 20 identically prepared realizations of the same
one-dimensional process in the region 401 � x � 600. (d), (i), (n) Comparisons of averaged density profiles (red), the initial condition (black
dashed), and the solution of Eq. (4) (blue). (e), (j), (o) Comparisons of averaged density profiles (red), the initial condition (black dashed), and
the solution of Eq. (8) (blue). All discrete simulation results and mean-field solutions were obtained using periodic boundary conditions. (c),
(h), (m) Show the nonlinear diffusivity function, D(c) = 1 − σc(4 − 3c), associated with Eq. (2). Results for extreme (σ = 0.95) and strong
(σ = 0.80) adhesion show that D(c) becomes negative in some interval c ∈ [c1,c2] while results for the modest adhesion (σ = 0.65) show that
D(c) > 0 for all c ∈ [0,1]. (p), (q) Continuum (blue) and discrete (red) profiles of F (l,l + 1) and F (l,l + 2), respectively. In each plot, profiles
of the correlation function are given for extreme (σ = 0.95), strong (σ = 0.80), and modest adhesion (σ = 0.65) with the arrow showing the
direction of increasing σ . (r) The error profile E as a function of the adhesion parameter σ ∈ [−1,1] at t = 5000. Error profiles are given for
Eqs. (4) (blue) and (8) (red). All numerical solutions of Eq. (2) correspond to δx = 0.2, δt = 0.01, and ε = 1 × 10−6. All numerical solutions
of Eqs. (4) and (8) correspond to δt = 0.05.
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V. CONCLUSION385

Our analysis shows it is possible to make accurate386

mean-field predictions of a discrete exclusion process with387

strong adhesion. Other mean-field predictions are valid for388

mild contact effects only [6–8,11,12,14]. Identifying and389

quantifying why traditional mean-field models fail to predict390

highly adhesive motion requires new approaches that relax391

the assumptions underlying the traditional approach. Our suite392

of mean-field models allow us to quantify the accuracy of393

assumptions relating to spatial truncation effects, and the394

neglect of correlation effects. We find that the traditional pde395

is extremely sensitive to the neglect of correlations.396

The model presented in this paper is a simplified model of397

cell migration since it deals only with one-dimensional motion398

without cell birth and death processes. Our previous work on399

moment closure models has shown how to incorporate cell400

birth and death processes, as well as showing that it is possible 401

to develop moment closure models in higher dimensions. 402

These additional details could also be incorporated into 403

the current model. Other extensions to the discrete model 404

include studying adhesive migration where we explicitly 405

account for agent shape and size effects [33], or the study of 406

adhesive migration on a growing substrate [34]. We anticipate 407

that accurate mean-field models of these these extensions 408

will require a similar, but more detailed, moment closure 409

approach. 410
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