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1. Background 
 
An important research problem in mass spectrometry is in the identification of high 
quality spectra which can lead to interesting biological insights regarding peptide 
sequences.  Mass spectrometry (MS) is a method that is used to find what proteins and 
peptides are in a biological sample.  Mass spectrometry is very important to proteomics 
research, as discussed in the research paper by Han, X 2008.  Proteomics is the study of 
proteins, particularly their structure and function.  A mass spectrometer is a machine 
that is used in MS, which measures the mass to charge ratio of charged ions.  The 
output given by the mass spectrometer is called a spectrum.  A spectrum (or spectra for 
plural) is used to identify what proteins are in the sample.  Currently there is no 
definitive way to assess the quality of the spectrum, however, Nesvizhskii et al (2006) 
has suggested a spectrum quality score to detect quality spectra.  This score is designed 
for tandem MS (known as MS/MS), which is when peptides in sample have been 
further fragmented and the mass to charge ratios of the fragment ions measured.  If we 
can accurately and quickly access the quality of the spectrum, we can look deeper into 
the good spectra to possibly identify more proteins, or discard the bad spectra without 
wasting time trying to identify something that is not there.  This project has focused on 
developing R code that can report and combine several numerical features, as suggested 
by Nesvizhskii et al (2006), to detect quality spectra.  
 

The mass spectrometry process can be described in a series of steps.  Firstly, a 
sample of proteins is digested into peptides.  Second, the peptides are separated based 
on a particular property so they are simplified when going into the mass spectrometer.  
The mass spectrometer then performs its analysis, separating the peptides according to 
their mass/charge ratio.  Patterns in the mass spectrum can then be used to identify what 
peptides are in the sample. 
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Figure 1.2 MS/MS spectrum 

 
This is a typical spectrum from MS/MS data, and the spectrum that I focused on 

at the beginning of the project.  This spectrum contains fragments from one of the 
peptides of Bovine Serum Albumin, which is a protein.  Most of the peaks have a mass 
to charge ratio of between 0 and 800, with varying intensities.   
 
2. The function 

The Nesvizhskii paper discussed 8 different descriptive features that could be 
constructed from a given spectrum which would be used to create a spectrum quality 
score (SQS).  These features aim to measure the quality of the MS/MS spectra.  They 
characterize the overall distribution of peaks in the spectrum, as well as detect certain 
patterns expected to be present in high quality spectra.  The first three measures are: 
number of peaks square root transformed, arithmetic mean of the peak intensities log 
transformed and standard deviation of the peak intensities log transformed.  These 
measures are very simple to calculate using R and are to do with the size of the peaks 
themselves.  The next two measures – smallest m/z range containing 95% of the total 
peak intensity, and smallest m/z range containing 50% of the total peak intensity – were 
much harder to calculate.  The red lines in Figure 2.1 below indicate the type of interval 
that these measures describe.  For this spectrum, we found that the smallest m/z range 
containing 95% of the total peak intensity is 516.286 and the smallest m/z range 
containing 50% of the total peak intensity is 242.1208.  Measure 6 is the total ion 
current per m/z, which we could not calculate because we were not given this 
information in the dataset.   
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Figure 2.1 MS/MS spectrum indicating m/z interval. 

 
The final two features are both concerned with the space between the peaks.  

Feature seven is the standard deviation of the consecutive m/z gaps between all peaks, 
log transformed (4.13 for this spectrum).  Feature eight is the average number of peaks 
within a 2-Da interval around any peak.  We found that, on average, there are 4.63 
peaks within a 2-Da interval around any peak.  After the code was written for each 
descriptive feature, we constructed a generalised function to give all the features for any 
spectrum.   
 

Once we managed to get the function up and running in R, it was time to 
generalise it and run it on more spectra.  This presented a challenge in itself because 
some of the descriptive measures were quite time consuming to calculate.  This first 
spectrum that we used to write the function was relatively small in relation to the 
number of peaks it contains, but there were 174 MS/MS spectra in this sample, some 
spectra with hundreds of peaks and others with thousands.  I settled on looking only at 
MS/MS spectra with less than 1000 peaks when performing my analysis, to overcome 
this challenge.   
 

3. De Novo Sequencing 

 
Figure 3.1 Histogram of De Novo scores for a MS/MS dataset. 
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De Novo sequencing and database searching are the two main identification 

methods used in mass spectrometry.  De novo sequencing derives the peptide sequence 
directly by using information from the MS/MS spectrum, whereas a database search 
queries a sequence database for the best peptide to explain the peaks in the MS/MS 
spectrum.  The database only has known sequences in it so the search is limited to these 
sequences.  Also, modifications can take place during the MS process and there can be a 
high level of noise in the spectrum.  Because of this, both methods can wrongly identify 
proteins or not identify them at all.  Further details on each procedure can be found in 
the article by Jing, Z 2011.  On this project, we collaborated with Dr. Ira Cooke, a 
research fellow from La Trobe’s school of molecular sciences.  Dr. Cooke provided the 
data sets for the research.  As we wanted to find out whether our function could 
accurately differentiate between a “good” spectrum and a “bad” spectrum, we first 
needed to find a way to assess the spectrum so we could place it in one of these two 
categories.  Ira sent us a data set to work with where the spectrum had each been given a 
De Novo score.  In Figure 3.1, a score below 0 (the left hand tail of the histogram) 
indicated the spectrum was “bad”, i.e. it was noisy or modifications had occurred that 
left a number of peptides unidentified.  If my function works accurately, there should be 
a noticable difference in the descriptive measures (as discussed in section 2) between a 
“good” spectrum and a “bad” spectrum.   
 
 
4. Analysis 

 

 
Figure 4.1 Plot of the first two principle components. 
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We used principle component analysis (PCA) to see if there was any sort of 
pattern in the data.  PCA is a procedure that seeks a small number of linear 
combinations of the variables while still retaining most of the information.  What we 
would like to see in the PCA graph (see Figure 4.1. where we have plotted the first two 
sample PCA linear combinations of variables) is the good and bad data seperated into 
two different groups.  We used a sample of 59 spectrum in our analysis, which were 
clearly defined as either “good” or “bad” by the value of their de novo score.  We did 
not observe separation between the two groups in our principle component analysis so 
to further assess the data, we performed a linear discriminant analysis (LDA) which 
was also used by Nesvizhskii et al (2006).  LDA is another classification tool that seeks 
an informative linear combination of the varialbes.  Unlike PCA, LDA uses knowledge 
of the true classification of the data.  Only one linear combination is available though.  
Our LDA was much more successful. 

 

 
Figure 4.2 Plot of the first linear discriminant. 

 
From Figure 4.2 we can see that the good data tend to group together, and have a 

higher first linear discriminant value than the bad data.  When using the predicted 
results from the LDA we found that the correct fit rate for the “good” data was very 
high (93.48%), and the overall correct fit rate for the data was also high (83.05%).  
Even though the correct fit rate for the “bad” data was 46.15% which is much lower, 
this result isn’t too detrimental.  This is because we are much more interested in 
correctly fitting the good data, as these are the spectrum from which we should be able 
to identify peptides more easily.   
 
5. Conclusion 
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The aim of this project was to develop R code for the spectrum quality 
assessment method for tandem mass spectrometry as introduced by Nesvizhskii et al 
(2006).  The main focus of the project was writing code in R for the descriptive 
measures introduced in the paper, and then combining this code into a function that can 
be applied to MS/MS data.  Over time, and with enough data collected, it could be 
possible to rely on a similar function based on descriptive measures to accurately assess 
the quality of the MS/MS data.  It could also be used as a tool to reveal if there are more 
proteins in a sample that have not been detected by other methods, or to indicate which 
spectrum could contain more peptides than already identified.   Dr. Ira Cooke has 
already indicated he may use this function, and record the results each time he uses 
tandem mass spectrometry to analyse a sample.   
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