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Introduction

Suppose we have a set of n of polygons. How many ways are there to make a surface
by gluing the polygons’ edges in pairs? We call this gluing a tiling of a surface, and we
categorise these surfaces by the number of holes in them (i.e., their genus). It should
be noted, by ‘surface’ we mean a ‘closed, compact and orientable surface’.

For example, here is one possible tiling of a genus 0 surface using four triangles.

polygons tiled surface

glue edges

These tilings are not always so straightforward to visualize. For instance, we can tile
a genus 1 surface using a single hexagon by gluing opposite edges in pairs.

glue edges

polygon tiled surface



To make things easier, we a need a way to concretely enumerate all possible tilings and
to be able to tell when two tilings are different and when they are the same.

Ribbon Graphs

The edges of the glued polygons of a tiling define a connected graph embedded on
a genus g surface. This is equivalent to a graph equipped with a cyclic ordering of
the edges around each of the vertices: that is, if we label the edges of the graph,
the clockwise order of the edges around every vertex is sufficient to recover the tiled
surface. We call this a ribbon graph. It should be noted that since we admit 1-sided
and 2-sided polygons in the tiling, these graphs can have loops and multiple edges.

More formally, we can define ribbon graphs in terms of permutations. To do this, we
first take a ribbon graph Γ and associate it with the set X consisting with the set of
half-edges of the graph. We then have the following definition [2]

Definition 1. A ribbon graph is a triple (X, σ0, σ1) consisting of a finite set X, a
permutation σ0 : X → X, and permutation σ1 : X → X of cycle type (2, 2, . . . , 2). We
require the group 〈σ0, σ1〉 to act transitively on X, and the set X/〈σ2〉 to be labelled
from 1 up to n, where σ2 = σ0σ1.

The primary benefit of defining ribbon graphs in terms of permutations is that it
becomes possible to calculate all tilings computationally by exhaustively searching for
triples (σ0, σ1, σ2) with the required properties.

We can also recover topological properties of a ribbon graph Γ from the permutation
definition:

X0 = X/〈σ0〉 is the set of vertices of Γ

X1 = X/〈σ1〉 is the set of edges of Γ

X2 = X/〈σ2〉 is the set of polygons used in the tiling (labelled from 1 to n in the
definition)

We can recover the genus using the formula for the Euler characteristic.

# vertices−# edges + # faces = 2− 2g

|X0| − |X1|+ |X2| = 2− 2g



Hypermaps

We now ask a more general question — how many ways can we make a genus g surface
by gluing the edges of n polygons in around a-sided edges? A tiling using a-sided edges
produces a graph embedded on a surface; we will call these hypermaps. In the a = 2
case, hypermaps are just ribbon graphs. Hypermaps generalize ribbon graphs and can
be expressed analogously in terms of permutations.

Definition 2. Fix some integer a ≥ 2. A hypermap is a triple (X, σ0, σ1) consisting
of a finite set X, a permutation σ0 : X → X, and permutation σ1 : X → X of cycle
type (a, a, . . . , a) . We require the group 〈σ0, σ1〉 to act transitively on X, and the set
X/〈σ2〉 to be labelled from 1 up to n, where σ2 = σ0σ1.

It will be useful at this point to define automorphisms. An automorphism of a hyper-
map preserves the underlying structure of the tiling – the constituent polygons and
the polygons each is attached to are unchanged. Automorphisms are, essentially, sym-
metries of the tiling. More formally, we have the following definition in terms of the
permutations.

Definition 3. Let Γ = (X, σ0, σ1) be a hypermap and σ2 = σ0σ1. An automorphism
of Γ is a permutation φ of X such that:

1. φσ0 = σ0φ

2. φσ1 = σ1φ

3. φσ2 = σ2

The set of automorphisms of Γ form a group under composition, which is denoted by
Aut(Γ).

We are now going to introduce some terminology. Let

M [a]
g,n(b1, b2, . . . , bn)

denote the automorphism weighted count of genus g hypermaps made using a given
set n polygons (a b1-sided polygon, a b2-sided polygon,..., and a bn sided polygon)
joined by a-sided edges. By ‘automorphism weighted’ we mean that a hypermap Γ
will contribute 1

|Aut(Γ)| to the enumeration. For instance, there is only one tiling of a



genus 0 surface using a single rectangle whose edges are joined in pairs; however the
hypermap corresponding to this tiling has two automorphisms, so

M
[2]
0,1(4) =

1

2

The requirement that 〈σ0, σ1〉 acts transitively on X ensures that the tiled surface is
connected (i.e. ensures Γ is a single surface rather than two separate surfaces).

Enumeration

We can rephrase enumeration M
[a]
g,n in terms of permutations using the above defini-

tions. The number of half-edges of a hypermap representing a tiling is |X| =
∑n

i=1 bi.
So, to find all suitable hypermaps, we first need to find all triples (σ0, σ1, σ2) such that:

the cycles of σ2 correspond to the polygonal faces of the tiling. That is: σ2

must have cycle type (b1, b2, . . . , bn), such that X2 = X/〈σ2〉 recovers the set of
polygons

σ1 has cycle type ) (a, a, . . . , a)︸ ︷︷ ︸
|X|
a

copies

, such that X1 = X/〈σ1〉 recovers the set of a-sided

edges used in the tiling

σ0 has cycle type of length 2 − 2g − n + a−1
a
|X|, since X0 = X/〈σ0〉 is the

set of vertices of the hypermap. This is a result from the Euler characteristic
calculation of the tiled surface,

# vertices−# edges + # faces = 2− 2g

# vertices− a×#a-sided edges + # polygons+#a-sided edges = 2− 2g

# vertices− a · |X|
a

+ n+
|X|
a

= 2− 2g

σ0σ1 = σ2

〈σ0, σ1〉 acts transitively on X



Since the labelling of the elements of X is arbitrary, we divide the number of suitable
triples (σ0, σ1, σ2) by all permutations of X, i.e. |X|!. This gives us the automorphism
weighted count of hypermaps. That is:

M [a]
g,n(b1, b2, . . . , bn) =

1

(b1 + b2 + . . .+ bn)!
·#tuples(σ0, σ1, σ2)

The following result from representation theory allows us to express the hypermap
enumeration in terms of characters of the symmetric group. This is a very efficient
way of calculating M

[a]
g,n when |X| is large.

Theorem 4 (Burnside Character Formula). Let G be a group. Let the number of k-
tuples (φ1, φ2, . . . , φk), where each φi is in a given conjugacy class Ci of G, be denoted
by N(G : C1, C2, . . . , Ck). Then:

N(G : C1, C2, . . . , Ck) =

∏k
i=1 |Ci|
|G|

∑
ρ

∏k
i=1 χρ(φi)

χρ(1)k−2

where 1 is the group identity of G, the summation is over all irreducible representa-
tions ρ of G, and χρ(φ) denotes the evaluation of the character of the conjugacy class
containing φ with respect to the irreducible representation ρ.

For the purpose of counting hypermaps, G is the symmetric group on b elements,
where b =

∑n
i=1 bi, and we want to count triples (σ0, σ1, σ2). The conjugacy classes

of Sb consist of permutations with common cycle structure. This is convenient since,
for a given enumeration M

[a]
g,n(b1, b2, . . . , bn), we know the precise cycle structure of σ1

and σ2. However, we only know the number of cycles in σ0, which complicates things.
So, we require that σ1 is in the conjugacy class corresponding to permutations with
cycle structure (a, a, . . . , a), σ2 is in the conjugacy class corresponding to permutations
with cycle structure (b1, b2, . . . , bn), and σ0 is in one of many possible conjugacy classes

corresponding to permutations with cycle type length 2− 2g − n+ b(a−1)
a

.

The Burnside character formula does not ensure that 〈σ0, σ1, σ2〉 forms a transitive
subgroup of Sb, and therefore does not guarantee that the permutation triples it counts
represent connected tiled surfaces. Consequently, we can only use this formula, in
its present form, to compute M

[a]
g,n when the cycle types of σ0, σ1, σ2 alone ensure

transitivity. There are two such cases; when any of σ0, σ1, σ2 has exactly one cycle of
length |X| (this occurs when the tiling has a single vertex, or the tiling has a single



a-sided edge and |X| = a, or the tiling consists of a single polygon with |X| sides); or
when no partition of any number in the cycle type of σ1 appears in the cycle type of
σ0, and vice versa. For example, we could use the Burnside character formula if σ1 has
cycle type (2, 2, 2) and σ2 has cycle type (3, 3); or when σ1 has cycle type (2, 2, 2) and
σ2 has cycle type (6).

More broadly, the Burnside character formula can be used to express the disconnected
hypermap enumeration — the number of ways to tile a disconnected surface. This can,
in fact, be used to to determine all connected hypermaps, and is a possible avenue for
further work.

Recursion

One useful way of simplifying enumerations is to express difficult tilings in terms of
simpler ones.For instance, we can construct ribbon graphs from simpler ribbon graphs
in four distinct ways:

joining two sides of a polygon by the addition of an edge to make two, smaller,
polygons

adding an edge to a polygon that is attached only at one edge

adding an edge between two polygons belonging to a single ribbon graph

adding an edge between two polygons belonging to different ribbon graphs

The above four cases were obtained by considering every type of ribbon graph produced
by the removal of a single edge from a ribbon graph counted in M

[2]
g,n(b1, b2, . . . , bn). By

considering every possible construction of the above four forms, we overcount by exactly
the number of edges in the ribbon graph. This leads to the following theorem:

Theorem 5. [3] By considering all the ways we can construct a ribbon graph from



simpler ribbon graphs, we obtain a recursion for M
[2]
g,n:

b1 + b2 + · · ·+ bn
2

M2
g,n(b1, b2, . . . , bn) =

∑
i<j

(bi + bj − 2)M2
g,n−1(bS\{i,j}, bi + bj − 2)

+
1

2

n∑
i=1

∑
p+q=bi−2

pq

M2
g−1,n+1(bS\{i}, p, q) +

∑
g1+g2=g

∑
ItJ=S\{i}

M2
g1,|I|+1(bI , p)Mg2,|J |+1(bJ , q)


+

n∑
i=1

(bi − 2)M2
g,n(bS\{i}, bi − 2)

For brevity, we have used S = {1, 2, . . . , n} to simplify subscripts. For instance (bS) =
(b1, b2, . . . , bn), and (bS\{i}) = (b1, b2, . . . , bi−1, bi+1, . . . , bn)

We can explain the coefficients in theorem 4 as follows; in the first case, there are
bi + bj − 2 ways to attach and edge to a face of perimeter bi + bj − 2 to produce two
faces of perimeters bi and bj. The summation is performed over all distinct pairs of
faces bi, bj, so this construction contributes

∑
i<j(bi + bj − 2)Mg,n−1(bS\{i,j}, bi + bj − 2)

to the overcounted enumeration of Mg,n(bS). In the second case, there are b− 2 ways
to attach a edge at one end to a face of perimeter b − 2, so construction contributes∑n

i=1(bi − 2)Mg,n(bS\{i}, bi − 2). In the third and fourth cases, there are pq ways to
attach an edge between faces of perimeters p and q. The summation for both of these
must be over every choice of p and q such that p + q = bi − 2. The fourth case
must also account for every choice of g1 + g2 = g and all I t J = S \ {i}. Since
the order of p, q is not relevant, we divide by 2, so that the third case contributes
1
2

∑n
i=1

∑
p+q=bi−2 pqMg−1,n+1(bS\{i}, p, q). Similarly, since the order of g1, g2 is not rele-

vant, fourth case contributes 1
2

∑n
i=1

∑
p+q=bi−2

pq
∑

g1+g2=g

∑
ItJ=S\{i}

Mg1,|I|+1(bI , p)Mg2,|J |+1(bJ , q).

Since every ribbon graph in the enumeration M2
g,n(bS) could have been produced from

any one of its edges in exactly one of the four ways listed above, the right hand side
of the theorem overcounts the enumeration by a factor of 1

2

∑n
i=1 bi.

In a similar way, we can write a recursion for M
[3]
g,n by considering all hypermaps

produced by removing a single 3-sided edge.



Theorem 6. We have the following recursion for M
[3]
g,n

1

3

n∑
i=1

biM
[3]
g,n(bS) =

n∑
i=1

(bi − 3)M [3]
g,n

(
bS\{i}, bi − 3

)
+

n∑
i=1

(
bi − 1

3

)
M

[3]
g−1,n

(
bS\{i}, bi − 3

)
+ 2

∑
distinct pairs

(i,j)

(bi + bj − 3)M
[3]
g,n−1

(
bS\{i,j}, bi + bj − 3

)
+ 2

∑
distinct triples

(i,j,k)

(bi + bj + bk − 3)M
[3]
g,n−2

(
bS\{i,j,k}, bi + bj + bk − 3

)

+
n∑
i=1

∑
p+q=bi−3

pq

M [3]
g−1,n+1

(
bS\{i}, p, q

)
+

∑
g1+g2=g

∑
ItJ=S\{i}

M
[3]
g1,|I|+1 (bI , p)M

[3]
g2,|J |+1 (bJ , q)


+

∑
distinct pairs

(i,j)

∑
p+q=bi+bj−3

pq

M [3]
g−1,n

(
bS\{i,j}, p, q

)
+

∑
g1+g2=g

∑
ItJ=S\{i,j}

M
[3]
g1,|I|+1 (bI , p)M

[3]
g2,|J |+1 (bJ , q)



+
n∑
i=1

∑
p+q+r=bi−3

pqr

1

3
M

[3]
g−2,n+2

(
bS\{i}, p, q, r

)
+

∑
g1+g2=g−1

∑
ItJ=S\{i}

M
[3]
g1,|I|+2 (bI , p, q)M

[3]
g2,|J |+1 (bJ , r)

+
1

3

∑
g1+g2+g3=g

∑
ItJtK=S\{i}

M
[3]
g1,|I|+1 (bI , p)M

[3]
g2,|J |+1 (bJ , q)M

[3]
g3,|K|+1 (bK , r)


While this is faster than a brute force enumeration of M

[3]
g,n, this recursion does not

generalize well. We can make a recursion for any choice of a, however, the size of this
recursion becomes intractably large with increasing a; for a = 2 there are 4 terms; for
a = 3 there are 11 terms; for a = 4 there are 41; and for a = 5 there are probably more
than a hundred.

Eynard-Orantin Topological Recursion

The Eynard-Orantin recursion arose from studies in statistical mechanics and random
matrix theory and has since found broader application in several other fields, such as
combinatorial topology. We can make use of it to enumerate hypermaps.



As an input, it takes a spectral curve

(x(z), y(z)) ∈ C2

where x and y are meromorphic functions and dx only has simple poles, and it produces
a series of differential forms, ωg,n(z1, z2, . . . , zn), called Eynard-Orantin invariants. The
recursion is as follows:

Theorem 7 (Eynard-Orantin Recursion). For a spectral curve (x(z), y(z)) ∈ C2, the
base cases for the recursion are:

ω0,1(z1) = ydx ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2

and the recursion is:

ωg,n(z1, zS) =
∑
α

Res
z=α

−
∫ z
sα(z)

ω0,2(z1, t)

2(y(z)− y(sα(z)))dx

[
ωg−1,n+1(z, sα(z), zS\{1}+

∑
g1+g2=g

I
⊔
J=S\{1}

ωg1,|I|+1(z, zI)ωg2,|J |+1(sα(z), zI)

]

where the sum is over all simple branch points α of dx, sα(z) denotes a local involution
around each branch point α, and I and J are non-empty.

Norbury [3], studied the spectral curve,

(x, y) =

(
z +

1

z
, z

)
whose Eynard-Orantin variants, when expanded about x1 = x2 = . . . = xn = ∞,
‘store’ all the values of M

[2]
g,n. That is,

ωg,n(z1, z2, . . . , zn) =
∞∑

b1,b2,...,bn=1

M
[2]
g,n(b1, b2, . . . , bn)

xb1+1
1 xb2+1

2 · · ·xbn+1
n

dx1 dx2 · · · dxn

We can also use this spectral curve to express M
[2]
g,n(b1, b2, . . . , bn) as a product of

combinatorial factors and a quasi polynomial.

From the spectral curve it is possible to prove the following:



Theorem 8. When
∑n

i=1 bi ≡ 0; (mod 2), the following is true M
[2]
g,n(b1, b2, . . . , bn) =

C(b1)C(b2) · · ·C(bn)Qg,n(b1, b2, . . . , bn) where:

C(b) =

(
b− 1

b(b− 1)/2c

)
and Qg,n is a quasi polynomial modulo 2.

A quasi-polynomial modulo 2 is a polynomial whose terms depend on the congruence
classes of its arguments modulo 2.

By calculating hypermap enumerations for other values of a, and searching for similar
expressions, we arrive at the following conjecture.

Conjecture 9. When
∑n

i=1 bi ≡ 0; (mod a), the following is true M
[a]
g,n(b1, b2, . . . , bn) =

C [a](b1)C [a](b2) · · ·C [a](bn)Q
[a]
g,n(b1, b2, . . . , bn) where:

C(b)[a] =

(
b− 1

b(b− 1)/ac

)
and Q

[a]
g,n is a quasi polynomial modulo a.

This also leads to another conjecture, that not only does a spectral curve exist for
every hypermap enumeration, but that the spectral curve has a specific form.

Conjecture 10. The Eynard-Orantin invariants of the spectral curve

(x, y) =

(
z

1 + za
, z

)
satisfy

ωg,n(x1, x2, . . . , xn) =
∂

∂x1

∂

∂x2

· · · ∂

∂xn

∞∑
b1,b2,...,bn=1

M [a]
g,n(b1, b2, . . . , bn)xb11 x

b2
2 . . . xbnn dx1 dx2 · · · dxn

when expanded about x1 = x2 = . . . xn=0.



Appendix: Calculations

Some arbitrarily chosen examples of hypermap enumerations.

g n (b1, b2, . . . , bn) M
[2]
g,n(b1, b2, . . . , bn)

0 1 (2) 1
2

0 1 (4) 1
2

0 1 (8) 7
4

0 3 (3, 2, 1) 2
0 3 (2, 2, 2) 1
1 1 (4) 1

4

1 1 (6) 5
3

2 1 (8) 21
8

2 1 (12) 539

g n (b1, b2, . . . , bn) M
[3]
g,n(b1, b2, . . . , bn)

0 1 (3) 1
3

0 1 (9) 4
3

0 3 (1, 1, 1) 2
0 3 (3, 3, 3) 8
1 1 (3) 1

3

1 1 (9) 112
3

1 2 (4, 2) 7
2

1 3 (4, 4, 4) 810
2 1 (30) 18153198063

g n (b1, b2, . . . , bn) M
[4]
g,n(b1, b2, . . . , bn)

0 1 (4) 1
4

0 1 (8) 1
2

0 1 (12) 11
6

0 2 (2, 2) 1
0 4 (1, 1, 1, 1) 6
0 4 (2, 2, 2, 2) 27
2 1 (24) 102393907
2 2 (7, 1) 117
2 2 (5, 3) 51

g n (b1, b2, . . . , bn) M
[5]
g,n(b1, b2, . . . , bn)

0 1 (5) 1
5

0 1 (10) 1
2

0 1 (15) 7
3

1 1 (5) 3
1 1 (10) 57
1 1 (15) 2639

3

1 2 (4, 1) 5
2 1 (10) 12453

10

2 2 (5, 5) 1210
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