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Introduction 
The single species Gompertz population model was first proposed by Benjamin 

Gompertz in 1825 [1] as a model for the growth of human populations.  
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where P  is defined to be the population, T  is the time parameter, R is the population 
growth rate, K is the carrying capacity of the environment and P0 is the initial population. 

In 1964, Laird [2] successfully used the Gompertz model to model the growth of 
tumour cells in a confined space. It can be argued that the treatment of tumour growth by 
chemical means could be modelled by a harvested Gompertz equation with density 
dependent harvesting, giving the model 
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where E is a positive constant. We will investigate the effect of this harvesting term E on the 
model and how large this value must be for the population to be driven to zero in infinite 
time. We can also determine the time taken to drive the population below a given 
proportion of the initial population for a given E. 

We will extend this investigation to the case where all the model parameters (R, K 
and E) vary slowly with time. Such systems can be approximated using numerical methods, 
though these methods do not provide a detailed insight to the trends of the model. Instead, 
this will be modelled using a multitiming technique, in order to investigate the effect of the 
model parameters on the trends of the system. 

 
Comparison of the Gompertz Model to the Harvested Gompertz 
Model 
 The harvested Gompertz model (2) is a separable DE and can be solved exactly. The 
harvested population as a function of time is given by 
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By setting E to zero, the solution (3) reduces to that for the unharvested model (1) as 

expected. Interestingly, regardless of the size of E, the population can never be driven to 

zero in infinite time. Instead as     , we observe  ( )      ( 
 

 
)  The limit is 

expressed in terms of the carrying capacity and a ratio between the harvesting coefficient 
and growth rate. In the case of modelling the treatment of tumour cells, this limiting state is 
not a problem, since the number of tumour cells will be discrete, so the limiting value can be 
driven close enough to zero for all cells to be killed.   



  

 Setting     in (3), the limit of the unharvested model is  ( )   , the carrying 
capacity, as     . Given the restriction that     the limiting state of the harvested 
model will always be less than the limit of the unharvested model.  

Figure 1 shows the decline in the limiting state as we increase the value of E for fixed 
values K, R and P0. The model is strictly increasing or decreasing, depending on where the 
initial population is in comparison to the limiting state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Plot of the unharvested Gompertz model (E=0) to five harvested models with 
K=200, R = 0.02 and P0=50. 

 

Reduction to a Portion given E or T 
 If we have an understanding of what factors affect the value of E in the model, we 
may determine the time needed to reduce the population to a prescribed value. If we 
express this value as a proportion of the initial population P0, we can get an expression (at 
least in the constant coefficient case) for the amount of time to pass before the population 
is driven below some value.  

Let  ̂ denote the fraction of the initial population we wish to drive the population to. 
We want to solve for T such that 
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By rearranging this inequality we can find the expression for the time that must have passed 
to reach the desired population, as 
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Similarly, we can find the desired value of E required to reduce the population below 

a given proportion in time T. By rearranging (5) we get 
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Both equations (6) and (7) are valid only if both the initial population and desired population 

are both greater than the limiting value. That is     ( 
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a varying environment  these inequalities may not hold, since there is no guarantee that the 
varying parameters will not bring the population back above the desired level. 

 
 

A Slowly Varying Environment 
 It is often problematic to describe the growth of populations in terms of constant 
coefficients, since environments are rarely constant. Changes in the weather, the 
introduction of new species and disease have an effect on the population parameters. The 
effect of some of these factors may sometimes be subtle, but it is important to incorporate 
them into the model. In the case of treating tumours, the intensity of the chemical 
treatment may change the value of the harvesting parameter over time. We will look into 
the case that all coefficients of the system vary with time. 

 
Multi-Scale Model 

We first want to rewrite the model (2) in terms of non-dimensional parameters. For 
the constant coefficient case at least, this simplifies the problem and may highlight values 
that are better measured relative to one another. The limit of the system being dependant 
on the ratio between the harvesting coefficient and growth rate is one example. The non-
dimensional time and population variables will be defined by; 
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where t and p are the non-dimensional time and population parameters respectively. The 
new forms of the existing parameters will be written in the form; 
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where r, k and e are dimensionless functions that vary with time. Note that in the case of 
constant coefficients, r, k and e are equal to 1. R0, K0 and E0 are characteristic values of the 
parameters and TR, TK and TE are characteristic time scales.  In order for these functions to 
be slowly varying the ratio of the population time scale to the characteristic time scales 
must be small. We define a small value; 
 

                                                         
 

    
 

 

    
 

 

    
                                                 (  ) 

 
This gives the non-dimensional form of the model (2), as 
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where        . This model can now be seen to vary on two different time scales; the 
population time scale t and the slowly varying larger time scale   . We will attempt to 
express the solution to this problem as a function of these two time scales, as well as a 

function of the time-scaling constant  . To avoid complications, a more general time scale 
needs to be proposed [3], 
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The population function can be now be expressed as a function of    and    as 
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The chain rule needs to be applied to get an expression for the derivative of this new 
function. Applying this rule gives 
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where    and    are partial differential operators with respect to    and     respectively. 
After these transformations we have the partial differential equation 
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This form allows a perturbation approach to be used, since   is now expressed explicitly. 

 

 



  

Perturbation Approach 
For the perturbation approach we express  ̃ as a perturbation expansion in  . 
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Substituting this expansion into (18) and collecting like powers of   we get  
equations to solve for  ̃  and  ̃  as  
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Solving equation (20) we find 
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where  (  ) is an arbitrary function of   . It is important for  (  ) to be bounded in order 
for (22) to satisfy the original limit      (    ) as       for the constant coefficient case.  
Expression (22) can now be substituted into (21) in order to find a particular solution for   ̃  
given by 

 

      ̃   
  ̃ 

  (  )
{
  (  ) 

 (  )

 (  ) (  )
   (  )     ( 

 (  )  
  (  )

)

 
 (  )

 
(

 (  )

  (  )
)

 

  
    ( 

 (  )  
  (  )

)  
  (  )

 (  )
(
  (  )

 (  )
)

 

}              (  ) 

 
In equation (22), as     ,   ̃  tends to the slowly varying limiting state 
 (  )    (   (    )  (    ) )   This has an exponential rate of convergence. So we expect 
the rate of convergence of  ̃  to be exponential also. To achieve this, the terms      ( ) 
and    

    ( )  must be excluded. We will set the values of these coefficients to zero, 
giving 
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where    is an arbitrary constant. We also need to set 
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We can now express    in terms of known functions. Equation (15) and (25) imply 
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  Together with the initial conditions we can solve for  ̃  and  ̃ , to obtain a two term 
expansion (19) for the evolving population  ̃  
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where, 
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Expression (27) gives an approximation to the solution of problem (14) when the model has 
slowly varying coefficients. Substituting      into the above equation, we can also get an 
approximation for the unharvested model varying in a slow environment. This substitution 
agrees with prior work by Grozdanovski [3], which has been done on the unharvested model 
in a slowly varying environment. 
 In (27) as      we observe a slowly varying limiting state given by 
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This limit is the sum of two terms. The first term is the same as the original limiting state, 
and the second term is expressed in terms of derivatives of the slowly varying parameters. 
This term should be small for significantly small  . 

Since the second term of (30) is expressed in terms of derivatives of the slowly 
varying parameters, in the case where we have constant parameters (       )  this 
limiting state reduces to 
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After transforming back to the original parameters in (2) we find 
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This limit is the same as the original problem, implying our expansion is consistent with the 
constant parameter case. 
 

 
 
 



  

Comparison to Numerical Solutions 
To test the accuracy of the approximation, we can compare our solutions with 

solutions found using numerical methods. Figure 2 shows a plot of the multitime 
approximation along with the solution using the Runge-Kutta method in Maple for    
    , where both the harvesting parameter and carrying capacity vary slowly with time. For 
these particular parameters, we can see that the approximation is very close to the 
numerical solution over the entire domain. For cases when        , we observed similar 
accuracy for other choices of     and  .  
 

  
Figure 2: Plot of the multitime approximation against numerical solution for         

varying harvesting parameter (     (   )) and carrying capacity 

(        s n(   )) 

However, as we increase the value of   the multitime method begins to fail. In figure 
3 we can see that the error of the approximation becomes more obvious as it deviates from 
the numerical solution. This is due to the error term  (  ) becoming more significant for 

larger  .  Typically the errors became obvious around       -     . This problem could be 

overcome by increasing the expansion to the second power of   , though seemingly 
unnecessary for      . 

 
 
 
 
 
 
 
 
 
 
 

Multi-timing 

Numerical 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Plot of the multitime approximation against numerical solution for         

varying harvesting parameter (     (   )) and carrying capacity 

(        s n(   )) 

 

Summary 
The addition of a density dependant harvesting term to the Gompertz model varies 

the limiting value, though no value of E drives the population to zero in infinite time. The 
model remains strictly increasing or decreasing even with a harvesting term. 
  The multitiming method was successful in giving an accurate approximation for the 
model where all parameters were varied slowly with time. This method highlights the trends 
of the model in terms of known parameters, unlike numerical methods. In cases where the 
ratio of the population time scale to the E, R and K time scales was too large we observed a 
significant loss of accuracy. For these cases, it would be more appropriate to extend the 
perturbation expansion up to higher powers of  .  
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