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1 Abstract

This paper aims to give an introduction to the AJ conjecture, which relates two knot
invariants. The coloured Jones function is a knot invariant derived from irreducible
representations of sl2. It has been shown by S. Garoufalidis that the coloured Jones
function is q-holonomic, i.e. it satisfies a nontrivial recursion relation. The AJ conjec-
ture proposes that a certain polynomial, which is determined by the coloured Jones
function, is in fact the A-polynomial.

2 The A-Polynomial

2.1 Definition

The A-polynomial is an invariant for knots derived from the fundamental group of
a given knot. The fundamental group and peripheral subgroup, as a complete knot
invariant, are difficult to work with, so the A-polynomial is of interest as a way of
simplifying the use of these. It is found by looking at representations of the fundamental
group of a knot into SL2(C). There is no known combinatorial procedure for calculating
the A-polynomial from a knot diagram.

Suppose a knot K has fundamental group G. If we have a loop that passes around
only one strand of the knot, called a meridian, we can find the corresponding element
of the fundamental group. Call this µ. Similarly, find a loop in space that travels
parallel to the knot, such that the knot and loop have linking number zero. This is
the longitude of the knot, called λ. Note that µ and λ will commute.



Now suppose we have a representation, ρ, of G into SL2(C). Any given represen-
tation will be conjugate to one that is upper triangular, so we will restrict to upper
triangular representations. As matrices in SL2(C) have determinant 1, we can say that
µ and λ are sent to the following matrices

ρ(µ) =

(
m t
0 m−1

)
ρ(λ) =

(
l k
0 l−1

)
,

where t, k, m and l are complex numbers. We will only use the top left entries of
these matrices.

Consider the set of all such points (l,m), across all representations. Call this set
S. S consists of several components of various dimensions. Take a component C, and
consider its Zariski closure C. C is the zero set of a set of polynomials. If C is the
zero set of only a single polynomial, call this polynomial FC . Define the product of all
such polynomials FC to be A′.

Finally, any polynomial found this way will by divisible by (l − 1), which comes
from the abelian representations of G. Thus, we will divide A′ out by (l− 1) to obtain
the final A-polynomial AK(l,m).

2.2 Properties of the A-polynomial

Theorem 1. If K is the unknot, AK(l,m) = ±1.
Proof. The fundamental group of the unknot is Z, which is abelian. Hence there

only exist abelian representations; upon dividing out by (l − 1) we are left with ±1.

Theorem 2. AK(l,m) = AK(l−1,m−1), up to multiplication by powers of l and m.
Proof. We know that ρ(µ) and ρ(λ) are commuting upper triangular matrices. We

can therefore assume, conjugating if necessary, that

ρ(µ) =

(
m 0
0 m−1

)
ρ(λ) =

(
l 0
0 l−1

)
,

We can then conjugate by

(
0 i
i 0

)
to obtain a new representation ρ′ such that

ρ′(µ) =

(
m−1 0

0 m

)
ρ′(λ) =

(
l−1 0
0 l

)
,

Thus, for every point (l,m) in S, the point (l−1,m−1) is also in S. Hence, the
zeroes of AK(l,m) are exactly the zeroes of AK(l−1,m−1), and so these polynomials
are identical up to multiplication by powers of l and m.



2.3 A-polynomial of the figure eight knot

As an example, we will find the A-polynomial of the figure eight knot. To calculate
the A-polynomial, we first find the Wirtinger presentation of the Figure eight knot’s
fundamental group. This is

< a, d|ada−1dad−1a−1da−1d−1 >,

where a and d are loops that pass around a component of the figure eight knot. By
drawing a line parallel to the figure eight knot with linking number zero, we can
determine a longitude of the knot. This is found to be λ = d−1ada−1d−1a−1dad−1a.
We take a meridian of the knot to be µ = a. Let ρ be a representation of the group
into SL2(C) . We know from the Wirtinger presentation that d = cac−1. Hence
ρ(d) = ρ(c)ρ(a)ρ(c−1), and so the representations of a and d are conjugate matrices.
They can therefore be written in the form

ρ(a) =

(
M 1
0 M

)

ρ(d) =

(
M 0
t M

)
We then use the group relation to find a new matrix, R = ρ(ada−1dad−1a−1da−1d−1),

whose entries are in terms of M and t. As this relation is the identity, we solve the
equation R = I, where I is the identity matrix. This gives the solution

t =
−1 + 3M2 −M4 −

√
1− 2M2 −M4 − 2M6 +M8

2M2

We also use the formula for the longitude to find ρ(λ). This is quite large, but
substituting in the above value of t gives a matrix with top left entry

L = −−1 +M2 +M6 −M8 +
√

1− 2M2 −M4 − 2M6 +M8

2M4

+
−M4(−2 +

√
1− 2M2 −M4 − 2M6 +M8)

2M4

This then gives the A-polynomial of the knot, as it satisfies the equation

−L+ LM2 +M4 + 2LM4 + L2M4 + LM6 − LM8 = 0



3 q-holonomicity of the Coloured Jones Function

3.1 The coloured Jones function

The Jones polynomial is a knot invariant discovered by Vaughan Jones in 1984. More
recently, a way of generalising this invariant was found, using irreducible representa-
tions of sl2. The coloured Jones function

JN(K) : N→ Z[q±1/4]

is a sequence of Laurent polynomials that measures the Jones polynomial of the
cables of a knot. In this section, we will prove some useful properties of the coloured
Jones function.

3.2 Definition of q-holonomicity

In general, only a small number of knots have a closed form formula for the coloured
Jones function. If this can’t be found, then it would be useful to know if the coloured
Jones function satisfies a recursion relation. Discrete functions that satisfy some non-
trivial recursion relation are called q-holonomic. For instance, the coloured Jones
function of the trefoil knot satisfies the relation

Jn(K) =
qn−1 + q4−4n − q−n − q1−2n

q1/2(qn−1 − q2−n)
Jn−1(K) +

q4−4n − q3−2n

q2−n − qn−1
Jn−2(K).

A useful property of such functions is that, under certain operations, new q-
holonomic functions can be assembled from known ones. We will make use of the
fact that

Lemma 3. The set of q-holonomic functions is closed under the operations

• Sums and products of q-holonomic functions

• Multisums of q-holonomic functions, i.e. functions of the form

g(a, b, n2, . . . , nm) =
b∑

n1=a

f(n1, n2, . . . , nm)

This will be used to show that the coloured Jones function is q-holonomic, by
assembling it from other q-holonomic functions.



3.3 Definition of the coloured Jones function

The coloured Jones function is determined by looking at the trace of a certain homo-
morphism between vector spaces.

Let V be a vector space of dimension N . If we have an isomorphism R that sends
V ⊗V to itself, we can associate this isomorphism to the crossings of a braid diagram.
To each positive crossing in the braid diagram, we will associate R. To each negative
crossing, we associate R−1.

We require that R obeys the same relation as is required of the generators of the
braid groups

(R⊗ IdV )(IdV ⊗R)(R⊗ IdV ) = (IdV ⊗R)(R⊗ IdV )(IdV ⊗R).

This equation is known as the Yang-Baxter equation.
We will give an exact formula for the R-matrix later; for now, we can define the

coloured Jones polynomial. Let β be a braid with n strands, and let Bn be the braid
group generated by σ1, . . . , σn. We define the operator τ(β),

τ(β) : V ⊗n− > V ⊗n,

which is determined by the properties that

τ(σ±1i ) = Id⊗i−1V ⊗R⊗ Id⊗n−i−1V ,

If β = β′β′′, then τ(β) = τ(β′)τ(β′′).

τ(β) is the operator that sends a braid to the corresponding homomorphism be-
tween vector spaces.

We can now define the quantum trace of τ(β). Let ei, i = 0, ..., N−1 be the standard
basis of V . Let K be the linear endomorphism of V ⊗n given by

K(ei1 ⊗ · · · ⊗ ein) = q(n(N−1)−2i1−···−2in)/2ei1 ⊗ · · · ⊗ ein

Lemma 4. K is q-holonomic. This follows from Lemma 3.

Then the quantum trace of τ(β) is defined as the trace of the function

τ̃(β) = τ(β)×K−1.

Specifically, the quantum trace is given by



trq(β) =
∑

1≤i≤n

∑
0≤ai≤N

τ̃(β)a1,...,ama1,...,am

If V is set to be the N-dimensional Uq(sl2)-module, this quantum trace is the
coloured Jones polynomial, JN(L). It can be shown that it is a knot invariant [5].
JN(L) has the properties that

• If K is the unknot, JN(K) = 1.

• J2(L) is the Jones polynomial J(q−1), up to multiplication by ±1.

3.4 Proof that the coloured Jones function is q-holonomic

First, we will give an explicit formula for the R-matrix. Consider the function

f+(N, a, b, k) := (−1)kq−((N−1−2a)(N−1−2b)+k(k−1))/4
[
b+ k
k

]
{N − 1 + k − a}k,

where we are using the q-holonomic functions

{n} = qn − q−n, {n}k =
k∏

i=1

{n− i+ 1},
[
n
k

]
=
{n}k
{k}k

.

The central point to be made about f+ is that

Lemma 5. f+ is q-holonomic in all variables.
This follows from Lemma 3.

The entries of the R-matrix can then be defined in terms of these functions [5], as
follows

(R)c,da,b := f+(N, a, b, c− b)δc−b,a−d,

(R−1)c,da,b := f+(N, a, b, b− c)δc−b,a−d,

where δi,j is the Kronecker delta function. It follows from Lemma 3 that τ(β) is
q-holonomic. Thus JN(L) is q-holonomic, as it is a sum over q-holonomic functions.



4 The AJ Conjecture

4.1 The non-commutative A-polynomial

A useful way of looking at a q-holonomic function is by examining the operator algebra
of the recursion relations it satisfies. To do this, take the operators E and Q, which
act on discrete functions f : N− > Z[q±] defined by

(Qf)(n) = qnf(n) (Ef)(n) = f(n+ 1).

These operators satisfy EQ = qQE, and the algebra A generated by polynomials
in E and Q, modulo this relation, is the set of possible recursion relations that f could
satisfy. We say that f is q-holonomic iff there exists P ∈ A such that Pf = 0. The
set If = {P ∈ A|Pf = 0} is known as the recursion ideal of f.

Unfortunately, A is not a principal ideal domain, so not all recursion ideals are gen-
erated by a polynomial in E and Q. Such a polynomial would be the non-commutative
A-polynomial of an ideal, and applying this to the recursion ideal of JN(L) would give
the A-polynomial of a knot. We solve this by instead considering the Ore algebra
Aloc = K[E, σ] over the field K = Q(q,Q), where σ is defined by

σ(f)(q,Q) = f(q, qQ).

Multiplication of monomials is given by aEk · bEl = aσk(b)Ek+l.
We can then define the recursion ideal of a function f with respect to Aloc in the

same way as before. f is q-holonomic with respect to Aloc iff it is q-holonomic with
respect to A.

Now Aloc is a principal ideal domain [2], so we can find a generator Aq(If ) of the
recursion ideal If with the desired properties

• Aq(If ) has the smallest E-degree and also lies in A.

• We can write Aq(If ) =
∑

k akE
k, where ak ∈ Z[q,Q] are coprime.

These properties uniquely determine Aq(If ) up to left multiplication by ±qaQb.
We define Aq polynomial of a knot K to be the Aq polynomial of the recursion ideal

of JN(K). Note that this ideal will be non-zero, as JN(K) is q-holonomic.
We will identify the meridian, longitude pair (M,L) with (Q,E) in the following

way

M2 = Q L = E



Conjecture 6. The AJ Conjecture
For any knot K, A(K)(L,M) = εAq(K)(L,M2), where ε is the evaluation map

that sets q = 1.

The Aq polynomial can be computed using the WZ Algorithm, developed by Wilf-
Zeilberger. This allows the AJ Conjecture to be verified in certain simpler cases. The
conjecture is true for the 31 and 41 knots [3], and in the case of torus knots [1].

5 Conclusion
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