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1 Abstract

This paper aims to give an introduction to the AJ conjecture, which relates two knot
invariants. The coloured Jones function is a knot invariant derived from irreducible
representations of sly. It has been shown by S. Garoufalidis that the coloured Jones
function is g-holonomic, i.e. it satisfies a nontrivial recursion relation. The AJ conjec-
ture proposes that a certain polynomial, which is determined by the coloured Jones
function, is in fact the A-polynomial.

2 The A-Polynomial

2.1 Definition

The A-polynomial is an invariant for knots derived from the fundamental group of
a given knot. The fundamental group and peripheral subgroup, as a complete knot
invariant, are difficult to work with, so the A-polynomial is of interest as a way of
simplifying the use of these. It is found by looking at representations of the fundamental
group of a knot into SLy(C). There is no known combinatorial procedure for calculating
the A-polynomial from a knot diagram.

Suppose a knot K has fundamental group G. If we have a loop that passes around
only one strand of the knot, called a meridian, we can find the corresponding element
of the fundamental group. Call this p. Similarly, find a loop in space that travels
parallel to the knot, such that the knot and loop have linking number zero. This is
the longitude of the knot, called A\. Note that ; and A will commute.
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Now suppose we have a representation, p, of G into SLy(C). Any given represen-
tation will be conjugate to one that is upper triangular, so we will restrict to upper
triangular representations. As matrices in SLs(C) have determinant 1, we can say that
p and A are sent to the following matrices

p(u)z(? mt_1> p@)z(é l]fl),

where t, k, m and [ are complex numbers. We will only use the top left entries of
these matrices.

Consider the set of all such points (I,m), across all representations. Call this set
S. S consists of several components of various dimensions. Take a component C', and
consider its Zariski closure C. C' is the zero set of a set of polynomials. If C is the
zero set of only a single polynomial, call this polynomial Fz. Define the product of all
such polynomials F to be A'.

Finally, any polynomial found this way will by divisible by (I — 1), which comes
from the abelian representations of G. Thus, we will divide A" out by (I — 1) to obtain
the final A-polynomial Ag (I, m).

2.2 Properties of the A-polynomial

Theorem 1. If K is the unknot, Ax(l,m) = +1.
Proof. The fundamental group of the unknot is Z, which is abelian. Hence there
only exist abelian representations; upon dividing out by (I — 1) we are left with £1.

Theorem 2. Ag(l,m) = Ax(I™',m™), up to multiplication by powers of I and m.
Proof. We know that p(u) and p(\) are commuting upper triangular matrices. We
can therefore assume, conjugating if necessary, that

p(u)z(? m0_1> p@)z(é l(_)l),

: 0 ¢ . :
We can then conjugate by ( ; 8 ) to obtain a new representation p’ such that

pn) = < m01 7?,,/ > PN = ( lol (z) ) :

Thus, for every point (I,m) in S, the point (I7',m™') is also in S. Hence, the
zeroes of A (l,m) are exactly the zeroes of Ag (11, m™!), and so these polynomials
are identical up to multiplication by powers of [ and m.
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2.3 A-polynomial of the figure eight knot

As an example, we will find the A-polynomial of the figure eight knot. To calculate
the A-polynomial, we first find the Wirtinger presentation of the Figure eight knot’s
fundamental group. This is

< a,d|ada dad o da " d T >,

where a and d are loops that pass around a component of the figure eight knot. By
drawing a line parallel to the figure eight knot with linking number zero, we can
determine a longitude of the knot. This is found to be A\ = d~tada='d ta"'dad'a.
We take a meridian of the knot to be u = a. Let p be a representation of the group
into SLy(C) . We know from the Wirtinger presentation that d = cac™!. Hence
p(d) = p(c)p(a)p(c™!), and so the representations of a and d are conjugate matrices.

They can therefore be written in the form

= (% )

o= (Y 3)

We then use the group relation to find a new matrix, R = p(ada™'dad ‘a='da=*d™"),
whose entries are in terms of M and t. As this relation is the identity, we solve the
equation R = I, where [ is the identity matrix. This gives the solution

L ~1+3M? — M* — /1 —2M? — M* —2M6 + M3
2M?
We also use the formula for the longitude to find p(A). This is quite large, but
substituting in the above value of ¢ gives a matrix with top left entry

L+ MR MO = MP 4+ V1 - 2M? — M* - 2M5 4 M®
2M*

L =

+—M4(—2 + /1 —2M2 — M* — 2MS + M?)
2M4
This then gives the A-polynomial of the knot, as it satisfies the equation

—L+LM?+ M*+2LM* + L>M*+ LM% — LM® =0
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3 g¢g-holonomicity of the Coloured Jones Function

3.1 The coloured Jones function

The Jones polynomial is a knot invariant discovered by Vaughan Jones in 1984. More
recently, a way of generalising this invariant was found, using irreducible representa-
tions of sls. The coloured Jones function

In(K) : N = Z[gF4)

is a sequence of Laurent polynomials that measures the Jones polynomial of the
cables of a knot. In this section, we will prove some useful properties of the coloured
Jones function.

3.2 Definition of ¢g-holonomicity

In general, only a small number of knots have a closed form formula for the coloured
Jones function. If this can’t be found, then it would be useful to know if the coloured
Jones function satisfies a recursion relation. Discrete functions that satisfy some non-
trivial recursion relation are called g-holonomic. For instance, the coloured Jones
function of the trefoil knot satisfies the relation

n—1 4—4n —-n 1—-2n 4—4n 3—2n
+ — —
! 1/q2 n—1 ! 2—n ! In-1(K) + ! 2-n n—1
2 (gt = g*m) " —q
A useful property of such functions is that, under certain operations, new g-
holonomic functions can be assembled from known ones. We will make use of the
fact that

J(K) =

Lemma 3. The set of g-holonomic functions is closed under the operations
e Sums and products of g-holonomic functions

e Multisums of ¢-holonomic functions, i.e. functions of the form

b
g(a’7b7n27"‘7nm> = Zf(n17n27"'7nm)

ni=a

This will be used to show that the coloured Jones function is g-holonomic, by
assembling it from other g-holonomic functions.
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3.3 Definition of the coloured Jones function

The coloured Jones function is determined by looking at the trace of a certain homo-
morphism between vector spaces.

Let V be a vector space of dimension N. If we have an isomorphism R that sends
V @V to itself, we can associate this isomorphism to the crossings of a braid diagram.
To each positive crossing in the braid diagram, we will associate R. To each negative
crossing, we associate R

We require that R obeys the same relation as is required of the generators of the
braid groups

(R® Idy)(Idy ® R)(R® Idy) = (Idy ® R)(R® Idy)(Idy ® R).

This equation is known as the Yang-Baxter equation.

We will give an exact formula for the R-matrix later; for now, we can define the
coloured Jones polynomial. Let 8 be a braid with n strands, and let B,, be the braid
group generated by o1, ...,0,. We define the operator 7(53),

7(B) : V' — > Ve,
which is determined by the properties that

(o)) = Idy" ' @ R 1dy" ",

It 3 = §'B", then 7(8) = 7(8)7(8").

7(p) is the operator that sends a braid to the corresponding homomorphism be-
tween vector spaces.

We can now define the quantum trace of 7(3). Let e;,i = 0, ..., N —1 be the standard
basis of V. Let K be the linear endomorphism of V®" given by

Kle)® - ®e,) = q(”(]\f—l)—?il—“'—21'71)/261.1 R Re,
Lemma 4. K is q-holonomic. This follows from Lemma 3.
Then the quantum trace of 7(/3) is defined as the trace of the function

7(8) =T7(8) x K.

Specifically, the quantum trace is given by
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trg(B)= > Y F(Buam

1<i<n 0<a; <N

If V' is set to be the N-dimensional U,(sly)-module, this quantum trace is the
coloured Jones polynomial, Jy(L). It can be shown that it is a knot invariant [5].
Jn (L) has the properties that

e If K is the unknot, Jy(K) = 1.

e Jy(L) is the Jones polynomial J(¢™!), up to multiplication by +1.

3.4 Proof that the coloured Jones function is g-holonomic

First, we will give an explicit formula for the R-matrix. Consider the function

FU(N, @b, ) = (—1)Fg-(V-1-20(N=1-20)4k(k-1) [b . k} (N —1+k—a},

where we are using the g-holonomic functions

e e -4

The central point to be made about f, is that

Lemma 5. f, is g-holonomic in all variables.
This follows from Lemma 3.

The entries of the R-matrix can then be defined in terms of these functions [5], as
follows

(R)Z,i = f+<N7 a, b7 C— b)dcfb,afah

(R_I)Z:‘Z = f—i— (N7 a, b7 b— C)éc—b,a—da

where 0, ; is the Kronecker delta function. It follows from Lemma 3 that 7(3) is
g-holonomic. Thus Jy(L) is g-holonomic, as it is a sum over g-holonomic functions.
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4 The AJ Conjecture

4.1 The non-commutative A-polynomial

A useful way of looking at a g-holonomic function is by examining the operator algebra
of the recursion relations it satisfies. To do this, take the operators £ and @), which
act on discrete functions f : N— > Z[¢*] defined by

(Qf)(n) = ¢"f(n) (Ef)(n) = f(n+1).

These operators satisfy FQ = qQF, and the algebra A generated by polynomials
in £ and @, modulo this relation, is the set of possible recursion relations that f could
satisfy. We say that f is g-holonomic iff there exists P € A such that Pf = 0. The
set Iy ={P € A|Pf =0} is known as the recursion ideal of f.

Unfortunately, A is not a principal ideal domain, so not all recursion ideals are gen-
erated by a polynomial in £ and ). Such a polynomial would be the non-commutative
A-polynomial of an ideal, and applying this to the recursion ideal of Jy (L) would give
the A-polynomial of a knot. We solve this by instead considering the Ore algebra
Aie = K[E, o] over the field K = Q(q, @), where o is defined by

a(f)(g, Q) = f(g,9Q).

Multiplication of monomials is given by aE* - bE! = ac®(b) E**.

We can then define the recursion ideal of a function f with respect to A, in the
same way as before. f is g-holonomic with respect to A iff it is g-holonomic with
respect to A.

Now Ay is a principal ideal domain [2], so we can find a generator A,(Iy) of the
recursion ideal Iy with the desired properties

o A,(Iy) has the smallest E-degree and also lies in A.
e We can write A,(I) = >, axE*, where a; € Z[q, Q)] are coprime.

These properties uniquely determine A,(I) up to left multiplication by +¢*Q®.

We define A, polynomial of a knot K to be the A, polynomial of the recursion ideal
of Jy(K). Note that this ideal will be non-zero, as Jy(K) is g-holonomic.

We will identify the meridian, longitude pair (M, L) with (@, F) in the following

way
M?=Q L=E
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Conjecture 6. The AJ Conjecture
For any knot K, A(K)(L,M) = eA,(K)(L, M?), where € is the evaluation map
that sets ¢ = 1.

The A, polynomial can be computed using the WZ Algorithm, developed by Wilf-
Zeilberger. This allows the AJ Conjecture to be verified in certain simpler cases. The
conjecture is true for the 3; and 4; knots [3], and in the case of torus knots [1].

5 Conclusion
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