

Real-Time Human Activity Recognition

in Augmented Reality Games

Ryann Sullivan

Supervised by Gleb Beliakov & Tim Wilkin

Deakin University

Abstract

As mobile phones have become commonplace in our society and their capabilities

continue to grow, research into activity recognition using these devices has also grown

rapidly this millennium. The purpose of this research is by using a series of averaging

techniques; identify which techniques (if any) are effective at enabling the real time

analysis of data collected from a mobile phone accelerometer. Through this research it

was found that some techniques are very similar in their robustness to noise. It was also

found that some of the computationally simpler averaging techniques performed just as

well as the more complex averaging techniques. This has important implications when

analysing data in real time.

Introduction

As technology has advanced and mobile phones have become more and more powerful

the opportunity for research into activity recognition using mobile devices has steadily

grown throughout the last decade. The basis of this research is to investigate the

effectiveness of using various averaging techniques to enable real time analysis of data

collected by accelerometer sensors found in many mobile phones today. In this research

the technique has been applied to the problem of trying to identify certain physical

behaviours (such as skipping, running, jumping etc.) for use in an augmented reality

mobile game. This research was part of a larger cross-disciplinary research team

investigating the use of augmented reality games on smartphones and tablets, as a

means of engaging children in physical exercise at school.

In the past decade there has been a lot of research in the field of activity recognition

with regards to mobile devices. Much of this research has been directed to the field of

healthcare and using activity recognition as a means of tracking elderly or injured

patients. For example sending an alert message to staff in a nursing home when

someone falls down or to track an injured athlete in a rehab facility to ensure they are

getting the correct amount of exercise to make an optimal recovery. There have been

2

however limitations to this research as the movements that are being tracked for these

purposes are often “non-rapid” movements such as walking or sitting. This creates a

very different data set to data gathered for example from a skipping child. In previous

research studies, sensors have often been mounted on the participant to ensure that the

recorded data remains in a fixed frame of reference relative to the participant however

for this research one of the fundamental aims was for participants not to be restricted by

having to wear the sensor but instead be able to hold it freely in the hand. Obviously in

the context of children’s movement being tracked for an augmented reality game the

types of movements we expect to see are vastly different from those exhibited by

patients in a retirement home.

This necessitates new research to be done to investigate these more “rapid” movements

and a new way of processing data. The processing method needs to be sensitive to the

fact that the data is more erratic as the movements of children running around are much

less fluid than the movements of retirees standing up and the data is noisier due to the

fact that the sensor is not worn by the participant and therefore rotations and translations

of the phone relative to the participant will corrupt signals. Another problem that

needed to be overcome in the research was that the sensors in most mobile phones do

not sample the environment at regular intervals and therefore many statistical

techniques become considerably harder to implement and make the processing of the

data more cumbersome.

Research in this field is relevant now more than ever in Australia as the obesity rates in

children and teenagers are rising and this research will contribute to trying to get

children in schools to be more physically active whilst keeping them entertained playing

an augmented reality game.

Method

The research began by becoming familiar with the phone and how it collected data

using the custom application loaded onto the device. Then some test data was collected

using the phone and the grammatical structure of the data strings was analysed. An

example data string is shown below in Figure 1. (NOTE: In the phone’s output file the

entire data string was stored in one line)

20140117144627495:Sensor:SensorsNO:

acc(0.031158447,-0.17416382,11.066971)

mag(23.878479,4.4387817,159.8999)

bearing(-1.2822051)

gyro(1.373291E-4,0.003036499,-1.8310547E-4)

light(11.0)

pressure(995.6727)

proximity(5.000305)

grav(0.003554366,-0.15101178,9.805487)

linacc(0.01807214,5.0239265E-4,0.0038967133)

rotvec(-0.0057282923,-0.0051482692,0.6507431,0.0,0.0)

humidity(0.0)

ambienttemp(0.0)

3

After analysing the structure of the programs output, a program was written in

MATLAB to extract the useful information from the file and store each relevant

segment of data in an appropriate variable. The next step was to identify exactly what

each of the relevant data segments represented. This was achieved by researching online

the phone’s API (Application Programming Interface) and how its sensors worked. The

relevant data and descriptions are shown below in Figure 2.

Data Segment Description
20140117144627495 A timestamp recording the date/time

that the record was taken. Formatted as

YYYYMMDDHHMMSSSSS
acc(0.031158447,-

0.17416382,11.066971)
The acceleration in (x,y,z) axis of the

phone respectively. Measured in ms
-2

.
mag(23.878479,4.4387817,159.8999) Magnetometer readings in (x,y,z) axis of

the phone respectively. Measured in T.
bearing(-1.2822051) The radial bearing of the phone from

true North.
gyro(1.373291E-4,0.003036499,-

1.8310547E-4)
The gyroscopic rotations in (x,y,z) axis

of the phone respectively. Measured in

inertial units.
grav(0.003554366,-

0.15101178,9.805487)
The acceleration due to gravity along

the (x,y,z) axis of the phone

respectively. Measured in ms
-2

.
rotvec(-0.0057282923,-

0.0051482692,0.6507431,0.0,0.0)
The rotation in radians around the

(x,y,z) axis of the phone respectively.

Rotation is measured by the change in

orientation of the phone from the last

sample to the current sample.

The next step was to convert the acceleration vectors into a single initial frame of

reference. This was done by using the rotation vector data to create a set of Tait-Bryan

angles and apply them to the data at each current sample and every other sample after it.

This in turn would step by step rotate the vectors back into their initial frame of

reference. Once the acceleration vectors were all in a single frame of reference they had

to be integrated to retrieve the velocity and position vectors to enable the reconstruction

of a trajectory space. Unfortunately this proved too difficult to perform as the noise in

the data was simply too much for the algorithms in MATLAB to overcome to give any

meaningful output. After repeated various attempts to create a trajectory space

representation the method was abandoned and instead the focus shifted to trying to

implement a feature space representation of the various activities. A sample of each

activity was recorded (hopping, jumping, skipping, running and walking). 10 feature

space variables were decided upon to represent each activity. They were…

4

 ()

1. Median

2. Arithmetic Mean

∑

3. Geometric Mean

 (∏

)

4. Harmonic Mean

∑

5. Least Trimmed Squares (Penalty Form)

∑()

6. Least Median Squares (Penalty Form)

 ()

5

7. Shorth (Penalty Form)

∑()

8. Root Mean Squared

 √

∑

9. Standard Deviation

 √

∑()

∑

10. Power Spectral Density

∫ ()

After identifying the 10 feature space variables to be used a program was written to take

in a vector of acceleration values, a vector of time values (that match the acceleration

values), a window size and a window offset. The program would take the acceleration

values for a certain window of time and calculate the feature space variables for the

window before moving the window along the sample by the window offset and then

taking the acceleration values corresponding to that window and recalculating the

feature space variables and so on until the window reaches the end of the window. Once

the feature space variables were computed for each window the corresponding x, y and

z components of the variables were combined to calculate the overall magnitude of the

averaged acceleration over the window. This was used to demonstrate how resistant to

noise the various averaging techniques were. The 10 feature space variables were then

plotted against their corresponding window index number to show how the average

value changed over the length of the sample.

6

Results

Figure 1 – Hopping

Figure 2 – Detailed Hopping

7

Figure 3 – Jumping

Figure 4 – Detailed Jumping

8

Figure 5 – Running

Figure 6 – Detailed Running

9

Figure 7 – Skipping

Figure 8 – Detailed Skipping

10

Figure 9 – Walking

Figure 10 – Detailed Walking

11

Discussion

For the graphs above…

 A = Median

 B = Arithmetic Mean

 C = Geometric Mean

 D = Harmonic Mean

 E = Least Trimmed Squares

 F = Least Median of Squares

 G = Shorth

 H = Root Mean Squared

 I = Standard Deviation

 J = Power Spectral Density

The results of the research present a few interesting features. It can be clearly seen from

Figures 1,3,5,7 & 9 that the magnitude of the harmonic mean varies greatly throughout

the samples. We can infer from this that the harmonic mean is greatly affected by noise

in the signals. It is also seen across all figures that the Least Trimmed Squares, Least

Median of Squares and the Shorth all give very similar results over the sliding windows.

The median also gave similar results to the LTS, LMS and Shorth for the 5 activities. In

Figure 6 the arithmetic mean and geometric mean both showed similar results to the

median and in Figure 10 they behaved similarly to the root mean squared. As the LTS,

LMS and Shorth all gave relatively similar results we can assume that they are the most

resistant to noise as this is more probable than them all being equally corrupted by noise

in the signals. However due to its computational efficiency along with its relative

resistance to noise the median may be the best feature variable to use.

Conclusion

The purpose of this research was to investigate how effective various averaging

techniques were at analysing data in real time that was collected by an accelerometer in

a mobile phone. Previous research has been limited in this field as movements being

tracked have been low energy movements such as walking, sitting and standing. Also in

prior research sensors have often had to be worn by the participant making the gathering

of data more intrusive and lacking the framework to manipulate the users data in real

time. It is for these reasons that new research was to be done to investigate higher

energy movements such as running and jumping. The results showed that using the

harmonic mean of a signal is not a valid averaging technique for activity recognition as

it is too heavily affected by noise in signals. It was also found that the Least Trimmed

Squares, Least Median of Squares & Shorth all gave similar results meaning that two of

these features would most likely be made redundant in future calculations. The

arithmetic mean seemed to be the best averaging technique to use for activity

recognition as it is fairly resistant to noise and is very computationally cheap to

implement which is important when data is being analysed in real time. Further research

is required in this field to fully realise whether these averaging techniques are a valid

method for performing activity recognition in real time.

12

References

 Beliakov G, Pradera A, Calvo T, 2007, Aggregation Functions: A Guide for

Practitioners, Springer

 Hanselman D, Littlefield B, 1998, Mastering MATLAB® 5: A Comprehensive
Tutorial and Reference, Prentice-Hall International Inc.

 Android, 2014, SensorEvent | Android Developers, 3/1/14,
<http://developer.android.com/reference/android/hardware/SensorEvent.html>

 Brezmes T, Gorricho JL, Cotrina J, 2009, ‘Activity Recognition from
Accelerometer Data on a Mobile Phone’, Lecture Notes in Computer Science,

5518, pp796-799

 Kwapisz JR, Weiss GM, Moore SA, 2010, ‘Activity Recognition using Cell

Phone Accelerometers’, Knowledge Discovery from Sensor Data, pp10-18

 Ravi N, Dandekar N, Mysore P, Littman ML, 2005, ‘Activity Recognition from
Accelerometer Data’, American Association for Artificial Intelligence

 Casale P, Pujol O, Radeva P, 2011, ‘Human Activity Recognition from
Accelerometer Data using a Wearable Device’, Lecture Notes in Computer

Science, 6669, pp289-296

 Krishnan NC, Colbry D, Juillard C, Panchanathan S, 2008, ‘Real Time Human

Activity Recognition using Tri-axial Accelerometers’, Sensors, Signals and

Information Processing

 Rousseeuw P, 1984, ‘Least Median of Squares Regression’, Journal of the
American Statistical Association, 79, pp871-880

 Rousseeuw P, and Leeroy A, 1987, ‘Robust Regression and Outlier Detection’,

John Wiley and Sons, pp380

13

Appendix

ImportData.m

function [A] = ImportData(filename)

if (~exist(filename,'file'))

 error(['Unable to open file ' filename]);

end

fid = fopen(filename,'r');

lines = textscan(fid,'%s','delimiter','\n');

fclose(fid);

numlines = length(lines{1});

j = 0;

hour = [];

minute = [];

second = [];

tstamp = [];

acc = [];

mag = [];

bearing = [];

gyro = [];

grav = [];

linacc = [];

rotvec = [];

for i = 1:numlines

 line_i = lines{1}{i};

 textscan(line_i,'%d','delimiter',':');

 colonpos = strfind(line_i,':');

 if length(colonpos) == 3

 if strcmp(line_i(colonpos(2)+1:colonpos(3)-

1),'SensorsNO') == 1

 j = j + 1;

 timestr = line_i(1:colonpos(1)-1);

 hour(j) = str2num(timestr(9:10));

 minute(j) = str2num(timestr(11:12));

 second(j) = str2num(timestr(13:17))/1000;

 tstamp(j) = (hour(j) * 60^2) + (minute(j) * 60) +

second(j);

 data = line_i(colonpos(3)+2:end);

 spacepos = strfind(data,' ');

14

 accdata = data(5:spacepos(1)-2);

 magdata = data(spacepos(1)+5:spacepos(2)-2);

 gyrodata = data(spacepos(3)+6:spacepos(4)-2);

 gravdata = data(spacepos(7)+6:spacepos(8)-2);

 linaccdata = data(spacepos(8)+8:spacepos(9)-2);

 rotvecdata = data(spacepos(9)+8:spacepos(10)-2);

 commapos = strfind(accdata,',');

 acc(j,1) = str2num(accdata(1:commapos(1)-1));

 acc(j,2) =

str2num(accdata(commapos(1)+1:commapos(2)-1));

 acc(j,3) = str2num(accdata(commapos(2)+1:end));

 commapos = strfind(magdata,',');

 mag(j,1) = str2num(magdata(1:commapos(1)-1));

 mag(j,2) =

str2num(magdata(commapos(1)+1:commapos(2)-1));

 mag(j,3) = str2num(magdata(commapos(2)+1:end));

 bearing(j) = str2num(data(spacepos(2)+9:spacepos(3)-

2));

 commapos = strfind(gyrodata,',');

 gyro(j,1) = str2num(gyrodata(1:commapos(1)-1));

 gyro(j,2) =

str2num(gyrodata(commapos(1)+1:commapos(2)-1));

 gyro(j,3) = str2num(gyrodata(commapos(2)+1:end));

 commapos = strfind(gravdata,',');

 grav(j,1) = str2num(gravdata(1:commapos(1)-1));

 grav(j,2) =

str2num(gravdata(commapos(1)+1:commapos(2)-1));

 grav(j,3) = str2num(gravdata(commapos(2)+1:end));

 commapos = strfind(linaccdata,',');

 linacc(j,1) = str2num(linaccdata(1:commapos(1)-1));

 linacc(j,2) =

str2num(linaccdata(commapos(1)+1:commapos(2)-1));

 linacc(j,3) =

str2num(linaccdata(commapos(2)+1:end));

 commapos = strfind(rotvecdata,',');

 rotvec(j,1) = str2num(rotvecdata(1:commapos(1)-1));

 rotvec(j,2) =

str2num(rotvecdata(commapos(1)+1:commapos(2)-1));

15

 rotvec(j,3) =

str2num(rotvecdata(commapos(2)+1:commapos(3)-1));

 rotvec(j,4) =

str2num(rotvecdata(commapos(3)+1:commapos(4)-1));

 rotvec(j,5) =

str2num(rotvecdata(commapos(4)+1:end));

 end

 end

end

save([filename '.mat'],'tstamp', 'acc', 'mag', 'bearing',

'gyro', 'grav', 'linacc', 'rotvec');

A.time = tstamp';

A.accel = acc;

A.mag = mag;

A.bearing = bearing';

A.gyro = gyro;

A.grav = grav;

A.linaccel = linacc;

A.rotation = rotvec;

end

16

FeatureVector.m

function A = FeatureVector(x,t,w,o)

A = zeros(10,size(x,2));

i = 1;

ts = t(i);

k = 0;

while ((t(end)-t(i)) >=w)

 k = k+1;

 j = (i-1) + find(t(i:end) <= ts + w, 1, 'last');

 if ~isempty(j)

 I(k,:) = [i j];

 i = (i-1) + find(t(i:j) <= ts + o, 1, 'last');

 ts = t(i);

 if isempty(i)

 break;

 end

 end

end

for i = 1:length(I)

 k = I(i,1):I(i,2);

 A(1,:,i) = median(x(k,:));

 A(2,:,i) = mean(x(k,:));

 A(3,:,i) = geomean(abs(x(k,:)));

 A(4,:,i) = harmmean(x(k,:));

 A(5,:,i) = ltsq(x(k,:));

 A(6,:,i) = lmsq(x(k,:));

 A(7,:,i) = shorth(x(k,:));

 A(8,:,i) = rms(x(k,:));

 A(9,:,i) = std(x(k,:));

 A(10,1,i) = trapz(pwelch(fft(x(k,1))));

 A(10,2,i) = trapz(pwelch(fft(x(k,2))));

 A(10,3,i) = trapz(pwelch(fft(x(k,3))));

end

end

