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Abstract 
 

As mobile phones have become commonplace in our society and their capabilities 

continue to grow, research into activity recognition using these devices has also grown 

rapidly this millennium. The purpose of this research is by using a series of averaging 

techniques; identify which techniques (if any) are effective at enabling the real time 

analysis of data collected from a mobile phone accelerometer. Through this research it 

was found that some techniques are very similar in their robustness to noise. It was also 

found that some of the computationally simpler averaging techniques performed just as 

well as the more complex averaging techniques. This has important implications when 

analysing data in real time. 

 

Introduction 
 

As technology has advanced and mobile phones have become more and more powerful 

the opportunity for research into activity recognition using mobile devices has steadily 

grown throughout the last decade. The basis of this research is to investigate the 

effectiveness of using various averaging techniques to enable real time analysis of data 

collected by accelerometer sensors found in many mobile phones today. In this research 

the technique has been applied to the problem of trying to identify certain physical 

behaviours (such as skipping, running, jumping etc.) for use in an augmented reality 

mobile game. This research was part of a larger cross-disciplinary research team 

investigating the use of augmented reality games on smartphones and tablets, as a 

means of engaging children in physical exercise at school.  

 

In the past decade there has been a lot of research in the field of activity recognition 

with regards to mobile devices. Much of this research has been directed to the field of 

healthcare and using activity recognition as a means of tracking elderly or injured 

patients. For example sending an alert message to staff in a nursing home when 

someone falls down or to track an injured athlete in a rehab facility to ensure they are 

getting the correct amount of exercise to make an optimal recovery. There have been 
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however limitations to this research as the movements that are being tracked for these 

purposes are often “non-rapid” movements such as walking or sitting. This creates a 

very different data set to data gathered for example from a skipping child. In previous 

research studies, sensors have often been mounted on the participant to ensure that the 

recorded data remains in a fixed frame of reference relative to the participant however 

for this research one of the fundamental aims was for participants not to be restricted by 

having to wear the sensor but instead be able to hold it freely in the hand. Obviously in 

the context of children’s movement being tracked for an augmented reality game the 

types of movements we expect to see are vastly different from those exhibited by 

patients in a retirement home.  

 

This necessitates new research to be done to investigate these more “rapid” movements 

and a new way of processing data. The processing method needs to be sensitive to the 

fact that the data is more erratic as the movements of children running around are much 

less fluid than the movements of retirees standing up and the data is noisier due to the 

fact that the sensor is not worn by the participant and therefore rotations and translations 

of the phone relative to the participant will corrupt signals. Another problem that 

needed to be overcome in the research was that the sensors in most mobile phones do 

not sample the environment at regular intervals and therefore many statistical 

techniques become considerably harder to implement and make the processing of the 

data more cumbersome. 

 

Research in this field is relevant now more than ever in Australia as the obesity rates in 

children and teenagers are rising and this research will contribute to trying to get 

children in schools to be more physically active whilst keeping them entertained playing 

an augmented reality game. 

 

Method 
 

The research began by becoming familiar with the phone and how it collected data 

using the custom application loaded onto the device. Then some test data was collected 

using the phone and the grammatical structure of the data strings was analysed. An 

example data string is shown below in Figure 1. (NOTE: In the phone’s output file the 

entire data string was stored in one line) 

 
20140117144627495:Sensor:SensorsNO:  

acc(0.031158447,-0.17416382,11.066971) 

mag(23.878479,4.4387817,159.8999)  

bearing(-1.2822051)  

gyro(1.373291E-4,0.003036499,-1.8310547E-4)  

light(11.0)  

pressure(995.6727)  

proximity(5.000305)  

grav(0.003554366,-0.15101178,9.805487) 

linacc(0.01807214,5.0239265E-4,0.0038967133)  

rotvec(-0.0057282923,-0.0051482692,0.6507431,0.0,0.0) 

humidity(0.0)  

ambienttemp(0.0) 
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After analysing the structure of the programs output, a program was written in 

MATLAB to extract the useful information from the file and store each relevant 

segment of data in an appropriate variable. The next step was to identify exactly what 

each of the relevant data segments represented. This was achieved by researching online 

the phone’s API (Application Programming Interface) and how its sensors worked. The 

relevant data and descriptions are shown below in Figure 2. 

 

Data Segment Description 
20140117144627495 A timestamp recording the date/time 

that the record was taken. Formatted as 

YYYYMMDDHHMMSSSSS 
acc(0.031158447,-

0.17416382,11.066971) 
The acceleration in (x,y,z) axis of the 

phone respectively. Measured in ms
-2

. 
mag(23.878479,4.4387817,159.8999) Magnetometer readings in (x,y,z) axis of 

the phone respectively. Measured in T. 
bearing(-1.2822051) The radial bearing of the phone from 

true North. 
gyro(1.373291E-4,0.003036499,-

1.8310547E-4) 
The gyroscopic rotations in (x,y,z) axis 

of the phone respectively. Measured in 

inertial units. 
grav(0.003554366,-

0.15101178,9.805487) 
The acceleration due to gravity along 

the (x,y,z) axis of the phone 

respectively. Measured in ms
-2

. 
rotvec(-0.0057282923,-

0.0051482692,0.6507431,0.0,0.0) 
The rotation in radians around the 

(x,y,z) axis of the phone respectively. 

Rotation is measured by the change in 

orientation of the phone from the last 

sample to the current sample. 

 

The next step was to convert the acceleration vectors into a single initial frame of 

reference. This was done by using the rotation vector data to create a set of Tait-Bryan 

angles and apply them to the data at each current sample and every other sample after it. 

This in turn would step by step rotate the vectors back into their initial frame of 

reference. Once the acceleration vectors were all in a single frame of reference they had 

to be integrated to retrieve the velocity and position vectors to enable the reconstruction 

of a trajectory space. Unfortunately this proved too difficult to perform as the noise in 

the data was simply too much for the algorithms in MATLAB to overcome to give any 

meaningful output. After repeated various attempts to create a trajectory space 

representation the method was abandoned and instead the focus shifted to trying to 

implement a feature space representation of the various activities. A sample of each 

activity was recorded (hopping, jumping, skipping, running and walking). 10 feature 

space variables were decided upon to represent each activity. They were… 
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7. Shorth (Penalty Form) 
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After identifying the 10 feature space variables to be used a program was written to take 

in a vector of acceleration values, a vector of time values (that match the acceleration 

values), a window size and a window offset. The program would take the acceleration 

values for a certain window of time and calculate the feature space variables for the 

window before moving the window along the sample by the window offset and then 

taking the acceleration values corresponding to that window and recalculating the 

feature space variables and so on until the window reaches the end of the window. Once 

the feature space variables were computed for each window the corresponding x, y and 

z components of the variables were combined to calculate the overall magnitude of the 

averaged acceleration over the window. This was used to demonstrate how resistant to 

noise the various averaging techniques were. The 10 feature space variables were then 

plotted against their corresponding window index number to show how the average 

value changed over the length of the sample. 

 

 

 

 

 



 

6 
 

Results 
 

 
 

Figure 1 – Hopping 

 

 
 

Figure 2 – Detailed Hopping 
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Figure 3 – Jumping 

 
 

Figure 4 – Detailed Jumping 
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Figure 5 – Running 

 

 
 

Figure 6 – Detailed Running 
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Figure 7 – Skipping 

 

 
 

Figure 8 – Detailed Skipping 
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Figure 9 – Walking 

 

 
 

Figure 10 – Detailed Walking 
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Discussion 
 

For the graphs above… 

 A = Median 

 B = Arithmetic Mean 

 C = Geometric Mean 

 D = Harmonic Mean 

 E = Least Trimmed Squares 

 F = Least Median of Squares 

 G = Shorth 

 H = Root Mean Squared 

 I = Standard Deviation 

 J = Power Spectral Density 
 

The results of the research present a few interesting features. It can be clearly seen from 

Figures 1,3,5,7 & 9 that the magnitude of the harmonic mean varies greatly throughout 

the samples. We can infer from this that the harmonic mean is greatly affected by noise 

in the signals. It is also seen across all figures that the Least Trimmed Squares, Least 

Median of Squares and the Shorth all give very similar results over the sliding windows. 

The median also gave similar results to the LTS, LMS and Shorth for the 5 activities. In 

Figure 6 the arithmetic mean and geometric mean both showed similar results to the 

median and in Figure 10 they behaved similarly to the root mean squared. As the LTS, 

LMS and Shorth all gave relatively similar results we can assume that they are the most 

resistant to noise as this is more probable than them all being equally corrupted by noise 

in the signals. However due to its computational efficiency along with its relative 

resistance to noise the median may be the best feature variable to use. 

 

Conclusion 
 

The purpose of this research was to investigate how effective various averaging 

techniques were at analysing data in real time that was collected by an accelerometer in 

a mobile phone. Previous research has been limited in this field as movements being 

tracked have been low energy movements such as walking, sitting and standing. Also in 

prior research sensors have often had to be worn by the participant making the gathering 

of data more intrusive and lacking the framework to manipulate the users data in real 

time. It is for these reasons that new research was to be done to investigate higher 

energy movements such as running and jumping. The results showed that using the 

harmonic mean of a signal is not a valid averaging technique for activity recognition as 

it is too heavily affected by noise in signals. It was also found that the Least Trimmed 

Squares, Least Median of Squares & Shorth all gave similar results meaning that two of 

these features would most likely be made redundant in future calculations. The 

arithmetic mean seemed to be the best averaging technique to use for activity 

recognition as it is fairly resistant to noise and is very computationally cheap to 

implement which is important when data is being analysed in real time. Further research 

is required in this field to fully realise whether these averaging techniques are a valid 

method for performing activity recognition in real time. 
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Appendix 
 

ImportData.m 

 
function [A] = ImportData(filename) 

 

if (~exist(filename,'file')) 

    error(['Unable to open file ' filename]); 

end 

 

fid = fopen(filename,'r'); 

lines = textscan(fid,'%s','delimiter','\n'); 

fclose(fid); 

 

numlines = length(lines{1}); 

 

j = 0; 

 

hour = []; 

minute = []; 

second = []; 

tstamp = []; 

acc = []; 

mag = []; 

bearing = []; 

gyro = []; 

grav = []; 

linacc = []; 

rotvec = []; 

 

for i = 1:numlines 

     

    line_i = lines{1}{i}; 

    textscan(line_i,'%d','delimiter',':'); 

    colonpos = strfind(line_i,':'); 

     

    if length(colonpos) == 3 

        if strcmp(line_i(colonpos(2)+1:colonpos(3)-

1),'SensorsNO') == 1 

 

            j = j + 1; 

 

            timestr = line_i(1:colonpos(1)-1); 

            hour(j) = str2num(timestr(9:10)); 

            minute(j) = str2num(timestr(11:12)); 

            second(j) = str2num(timestr(13:17))/1000; 

            tstamp(j) = (hour(j) * 60^2) + (minute(j) * 60) + 

second(j); 

 

            data = line_i(colonpos(3)+2:end); 

 

            spacepos = strfind(data,' '); 
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            accdata = data(5:spacepos(1)-2); 

            magdata = data(spacepos(1)+5:spacepos(2)-2); 

            gyrodata = data(spacepos(3)+6:spacepos(4)-2); 

            gravdata = data(spacepos(7)+6:spacepos(8)-2); 

            linaccdata = data(spacepos(8)+8:spacepos(9)-2); 

            rotvecdata = data(spacepos(9)+8:spacepos(10)-2); 

 

            commapos = strfind(accdata,','); 

 

            acc(j,1) = str2num(accdata(1:commapos(1)-1)); 

            acc(j,2) = 

str2num(accdata(commapos(1)+1:commapos(2)-1)); 

            acc(j,3) = str2num(accdata(commapos(2)+1:end)); 

             

            commapos = strfind(magdata,','); 

             

            mag(j,1) = str2num(magdata(1:commapos(1)-1)); 

            mag(j,2) = 

str2num(magdata(commapos(1)+1:commapos(2)-1)); 

            mag(j,3) = str2num(magdata(commapos(2)+1:end)); 

 

            bearing(j) = str2num(data(spacepos(2)+9:spacepos(3)-

2)); 

             

            commapos = strfind(gyrodata,','); 

             

            gyro(j,1) = str2num(gyrodata(1:commapos(1)-1)); 

            gyro(j,2) = 

str2num(gyrodata(commapos(1)+1:commapos(2)-1)); 

            gyro(j,3) = str2num(gyrodata(commapos(2)+1:end)); 

             

            commapos = strfind(gravdata,','); 

             

            grav(j,1) = str2num(gravdata(1:commapos(1)-1)); 

            grav(j,2) = 

str2num(gravdata(commapos(1)+1:commapos(2)-1)); 

            grav(j,3) = str2num(gravdata(commapos(2)+1:end)); 

 

            commapos = strfind(linaccdata,','); 

             

            linacc(j,1) = str2num(linaccdata(1:commapos(1)-1)); 

            linacc(j,2) = 

str2num(linaccdata(commapos(1)+1:commapos(2)-1)); 

            linacc(j,3) = 

str2num(linaccdata(commapos(2)+1:end)); 

             

            commapos = strfind(rotvecdata,','); 

             

            rotvec(j,1) = str2num(rotvecdata(1:commapos(1)-1)); 

            rotvec(j,2) = 

str2num(rotvecdata(commapos(1)+1:commapos(2)-1)); 
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            rotvec(j,3) = 

str2num(rotvecdata(commapos(2)+1:commapos(3)-1)); 

            rotvec(j,4) = 

str2num(rotvecdata(commapos(3)+1:commapos(4)-1)); 

            rotvec(j,5) = 

str2num(rotvecdata(commapos(4)+1:end)); 

             

             

        end 

    end 

end 

 

save([filename '.mat'],'tstamp', 'acc', 'mag', 'bearing', 

'gyro', 'grav', 'linacc', 'rotvec'); 

 

A.time = tstamp'; 

A.accel = acc; 

A.mag = mag; 

A.bearing = bearing'; 

A.gyro = gyro; 

A.grav = grav; 

A.linaccel = linacc; 

A.rotation = rotvec; 

 

end 
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FeatureVector.m 
 
function A = FeatureVector(x,t,w,o) 

 

A = zeros(10,size(x,2)); 

i = 1; 

ts = t(i); 

k = 0; 

while ((t(end)-t(i)) >=w ) 

    k = k+1; 

    j = (i-1) + find(t(i:end) <= ts + w, 1, 'last'); 

     

    if ~isempty(j) 

        I(k,:) = [i j]; 

        i = (i-1) + find(t(i:j) <= ts + o, 1, 'last'); 

        ts = t(i); 

        if isempty(i) 

            break; 

        end 

    end 

end 

 

 

for i = 1:length(I) 

     

    k = I(i,1):I(i,2); 

     

    A(1,:,i) = median(x(k,:)); 

    A(2,:,i) = mean(x(k,:)); 

    A(3,:,i) = geomean(abs(x(k,:))); 

    A(4,:,i) = harmmean(x(k,:)); 

    A(5,:,i) = ltsq(x(k,:)); 

    A(6,:,i) = lmsq(x(k,:)); 

    A(7,:,i) = shorth(x(k,:)); 

    A(8,:,i) = rms(x(k,:)); 

    A(9,:,i) = std(x(k,:)); 

    A(10,1,i) = trapz(pwelch(fft(x(k,1)))); 

    A(10,2,i) = trapz(pwelch(fft(x(k,2)))); 

    A(10,3,i) = trapz(pwelch(fft(x(k,3)))); 

end 

 

end 


