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1 Introduction

In 1952, Alan Turing declared that certain systems of partial di�erential equations
(PDEs) would produce what is now called Turing instability (Turing 1952). Turing
instability is a phenomenon whereby if the system is slightly perturbed from its steady
state and di�usion not allowed, then the system will fall back into the steady state.
However, with di�usion, a unstable state, or pattern, is formed. Before Turing's con-
clusion, it was generally thought that di�usion only ever had a stabilising e�ect.

Turing instability has been suggested as a pattern forming mechanism for many ap-
plications (see `Examples in literature' section). The initial derivations done by Turing
were completed for applications that had a �xed spatial domain over the entire time
of interest. However, in many contexts such as growing organisms, the domain grows
over time. It is therefore worth investigating whether Turing instability still occurs in
such problems.

1.1 Examples in literature

Many authors have studied pattern formation due to Turing instability. Various
paradigm and real-life models have been analysed. Where real-life applications are
studied, these most often are problems in organism growth at the start of life. Such
patterns have included; teeth position in alligators (Kulesa et al. 1996), the location of
mice limbs (Miura et al. 2006) or �sh skin patterning (Kondo and Asai 1995). For such



applications, a growing domain, one or two dimensional model is normally used. Other
applications include predator-prey distributions (Mukhopadhyay and Bhattacharyya
2006) and the distribution of chemical substances (Setayeshgar and Cross 1998).

In this report, we have chosen to analyse the paradigm Schnakenberg model in
one spatial dimension (Schnakenberg 1979). This model describes the concentration
of two substances u and v over time and is shown below in the non-dimensionalised
form. The model arises from a three reaction, four substance system that includes the
two substances of interest (u and v) as well as two external, non-depleting substances
(Penny 2001).

∂u

∂t
= γ(a− u+ u2v) +

∂2u

∂x2
,

∂v

∂t
= γ(b− u2v) + d

∂2v

∂x2
,

x ∈ [0, L], t ∈ R+ and γ, a, b, d ∈ R

(1)

Boundary conditions most often are no-�ux (Neumann), occasionally Dirichlet. We
have taken Neumann boundary conditions, therefore, to follow the literature.

1.2 Outline

In this report we derive the conditions for Turing instability for the Schnakenberg
model on a one-dimensional �xed domain. After ver�ying Turing instability occurs
by solving the problem numerically, the issue of growing domains is considered. Sev-
eral methods for including the domain growth in the system are compared, along with
various growth functions and growth rates. The system is shown to display Turing
instability in most cases.



2 Fixed domain

2.1 Conditions for Turing instability

Consider the following system of reaction-di�usion equations:

∂u

∂t
= F (u, v) +

∂2u

∂x2

∂v

∂t
= G(u, v) + d

∂2v

∂x2

d ∈ R\{1}

(2)

where F and G are in principle non-linear functions and d is the ratio of di�usivities
of u and v. Let the vector w be the vector containing both solutions u and v, that is

w =

[
u
v

]
. Assuming (u0, v0) is a steady state of (2) and linearising about this point,

gives:

wt = Jw +Dwxx, J =

[
Fu Fv
Gu Gv

]
(u0,v0)

and D =

[
1 0
0 d

]
Where Fu denotes the partial derivative of F with respect to u etc. For (2) to display
Turing instability, it can be shown that four conditions must be met:

Condition 1: FuGv −GuFv > 0

Condition 2: Fu +Gv < 0

Condition 3: dFu +Gv > 0

Condition 4: (Gv + dFu)
2 − 4d|J | > 0

The derivation of these conditions is shown in Appendix A.

One may notice that the parameter d cannot be equal to 1 if conditions 2 and 3 are
to be simultaneously satis�ed. That is, the di�usivities of u and v cannot be equal, as
we already noted.

2.2 Schnakenberg model

The steady state of the Schnakenberg model is found at:

u0 = a+ b and v0 =
b

(a+ b)2



As such, b must be positive and a > −b for a physically realistic steady state. Further
bounds on the parameters can be found by imposing the four conditions presented
above. These bounds are:

d > 1, b− a < (a+ b)3, d(b− a) > (a+ b)3

and

(
−(a+ b)2 +

d(b− a)
a+ b

)2

> 4d(a+ b)2

2.3 Numerical solutions

Using a forward di�erence in time, centred di�erence in space (FTCS) �nite di�erence
scheme, the concentrations of both substances over time were evaluated. All further
models (see following sections) also used such a numerical scheme. Although using an
implicit numerical scheme (for example, a backward di�erence approximation to the
time derivative) would have ensured numerical stability no matter the mesh size used,
an explicit scheme was chosen. This was because unlike an implicit scheme, an explicit
scheme could easily deal with the non-linear and coupled nature of the system.

Two simulations done for a constant one-dimensional domain are given in Figure I
below. The choice of parameters (a, b etc.) was made by randomly generating several
choices for each parameter and then choosing a set of parameters such that the con-
ditions given in 2.2 were satis�ed. The plot on the right has a domain size four times
that of the left. The initial disturbance was applied to u only, 10% along the domain.
This disturbance was 10% of the steady state u value.

In both of these examples, the peaks in one substance correspond to the troughs
in the other (only one substance is shown). For the plot on the left, the pattern
that emerges has less peaks than that on the right. Both examples, however, have a
sinusoidal shape of similar frequency for their end pro�les (both of these frequencies
are not the most unstable mode, but are close to it). Note, also, how the pattern does
appear earlier near the initial disturbance point, but quickly spreads across the domain
(this is more noticeable in the right plot).

3 Growing domain - methods

As stated earlier, the initial work done regarding Turing instability was all on �xed
domains. This includes the derivation of the conditions for Turing instability done in
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Figure I - di�erence from steady state value of u component of (1) for two di�erent
�xed domains. The system parameters are: a = -8.4, b = 12.43, d = 13.23, γ = 27.13.
Left: domain [0,1], Right: domain [0,4].

this report. However, real-life applications often are on growing domains. We therefore
wish to know whether Turing instability can still occur on such domains, and if so,
what the patterns produced look like. It was decided then to use the Schnakenberg
model (1) and analyse its behaviour on the domain [0, L(t)], where L(t) is the domain
length at time t and L(0) = 1. Three di�erent methods were devised to incorporate
growth into the model. A description of each follows.

3.1 Rudimentary method

At �rst, a rudimentary method was used to simulate the growing domain. This method
added node points in the spatial dimension as the domain grew. The timing of these
additions depended on the growth function. However, it was soon realised that adding
node points is not numerically stable. Also, when growth was fast or a long time was
simulated, the large number of nodes needed made the computation expensive.



3.2 First growing method

To improve the method, a co-ordinate transform using the original equations was
proposed. This transform mapped the domain from [0, L(t)] to [0, 1] for all t, where
L(t) was the length of the domain at time t. The transformed variables were x̂ = x

L

and t̂ = t (see Landman, Pettet, and Newgreen 2003 for a similar transformation).
As such, no node points needed to be added. This method was denoted as the `�rst
growing method'. Using the original governing equations (1), the new equations were
derived using:

uxx =
ux̂x̂
L2

and ut = ut̂ + ux̂
−x̂
L
Lt̂

resulting in:

ut̂ = γ(a− u+ u2v) + x̂
Lt̂
L
ux̂ +

1

L2
ux̂x̂

vt̂ = γ(b− u2v) + x̂
Lt̂
L
vx̂ + d

1

L2
vx̂x̂

(3)

To approximate the �rst derivative in space, a forward di�erence approximation was
used. This was due to the fact that the coe�cient in front of this term was always
positive for a growing (that is, not shrinking) domain.

These equations assume that the isotropic growth of the domain does not give rise
to any sort of advection. In other words, the expansion of the underlying substrate
does not aid in the dispersion of substance u or v. An example of a physical system
that may observe this principle is two gases in an expanding chamber. Since the gases
are not `attached' to the domain, the expanding chamber walls should not a�ect the
gases.

3.3 Second growing method

Many interesting applications are not in a gaseous medium, however. Rather, the
chemicals of interest are in a liquid or solid substrate and so the growth of the sub-
strate will aid di�usion. As such, the �rst growing method cannot be used. Another
method was then proposed for this situation (named the `second growing method' in
this report). The governing equations for this method were obtained from Crampin,
Ga�ney, and Maini 1999 and are derived from �rst principles using the ideas of mass-
balance. The same co-ordinate transformation used earlier was then implemented.



The governing equations before and after co-ordinate transform are given below. Note
that when the domain is �xed (that is, Lt = 0) the equations simplify to the original
Schnakenberg equations.

Before:
∂u

∂t
+
Lt
L

(
u+ x

∂u

∂x

)
=
∂2u

∂x2
+ γ(a− u+ u2v)

∂v

∂t
+
Lt
L

(
v + x

∂v

∂x

)
= d

∂2v

∂x2
+ γ(b− u2v)

After: ut̂ = γ(a− u+ u2v)− uLt̂
L

+
1

L2
ux̂x̂

vt̂ = γ(b− u2v)− vLt̂
L

+ d
1

L2
vx̂x̂

(4)

It can be seen that (3) and (4) di�er in only one term. For both methods, this term

is proportional to
Lt̂

L
. As such, when the domain grows slowly (and hence

Lt̂

L
is small),

the term will become negligible and the two methods should give similar results.

4 Numerical Comparison

4.1 Methods

We simulated all three methods and compared their results, as shown in Figure II. All
plots are for the �nal pro�le (i.e. the concentration at the last time step). Like earlier,
an initial displacement of 10% of the steady state u value was applied to u at the
position speci�ed (no disturbance was made to v). Note that with di�erent growing
functions, the �nal length reached after a common time period is not necessarily the
same. However, since we used a small growth rate in the following three examples,
the �nal length was similar for all three growth functions. These growth functions are



given below (r is the rate parameter and L(0) = 1 for all functions):

Linear: L(t) = 1 + rt,
Lt̂
L(t̂)

=
r

1 + rt̂

Exponential: L(t) = ert,
Lt̂
L(t̂)

= r

Logarithmic: L(t) = 1 + ln(1 + rt),
Lt̂
L(t̂)

=
r

(1 + rt̂)(1 + ln(1 + rt̂))

For most of the examples in literature, growth is approximated as a slow, exponentially
growing process (for example, Crampin, Ga�ney, and Maini 1999). The assumption

of exponential growth simpli�es the
Lt̂

L(t)
ratio to the constant growth rate parameter,

as displayed above. The further assumption of slow growth means that a suitable ap-
proximation to the governing equations can be made by omitting the whole

Lt̂

L(t)
term.

As such, the �rst and second growing methods become identical.

Although three growth functions are shown above, only plots for the linear growth
function are shown in Figure II. This was because the three growth functions produced
visually identical results. Further investigation into the e�ect of di�ering growth func-
tions is made in the next section.

For all plots in Figure II, the rudimentary and second growing method produce
similar results. It is not known why the rudimentary method is approximating the
second growing method and not the �rst. One possible explanation may be the e�ect
of boundary conditions - further investigation could be done on this issue. The �rst
growing method, meanwhile, gave somewhat similar curves to the two others for larger
growth rates and very similar curves for small growth rates (as expected). Taking
the di�erence of the two curves (not shown), it can be seen that there is still a small
systematic di�erence between the two methods.
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Figure II - di�erence from steady state value of u component of (1) for growing domains. The system parameters are: a = -8.4, b = 12.43,
d = 13.23, γ = 27.13, 1.5 time units, initial displacement at 0.3, linear growth. First row is u, second row is v.



4.2 Growth functions

For most applications, the second growing method will be the method that best models
the situation and is the most numerically stable of all of the three methods presented.
As such, further investigation using this method was completed for even larger growth
rate parameters. Larger growth rate parameters were chosen so that a greater distinc-
tion between the di�erent growth functions could be seen.

In the previous section, all three methods were run with the same growth rate
parameter and so the domain length was not the same for all functions at the end of
simulation. For large growth rate parameters, this means that the di�erence between
the domain lengths can be quite large at the end of simulation. To better compare
the growth functions, therefore, it was decided to make the r parameter di�erent for
each growth function. For all further examples in this section, this parameter was set
so that at the end of the simulated time period, all growth functions reached the same
domain length (see the left column of Figure III).

For the �rst row in Figure III, the di�erent growth functions do not appear to have
a large impact on the resulting concentration pro�le. However, this was not the case
when the system was made to reach a larger �nal domain length in the same amount
of time. For this to happen, the value of r for each growth function was increased.
This is shown in the second row of Figure III and Figure IV. A very interesting oc-
currence now happened - while the linear and exponential growth functions produced
(di�erent) patterns, the logarithmic failed to produce any sort of pattern. Instead, the
concentration became equal over the domain while growing in time (i.e. not a steady
state).

It is not shown here, but when the �nal domain length was increased further, the
linear function too fell into an non-stable isotropic state. A further increase and all
three functions produced no pattern. It is hypothesised that this order (logarithmic,
linear, exponential) is due to the gradient of the domain growth function in the early
stage of growth. As seen in Figure III, the order of decreasing initial domain growth
gradient is the same as the order of failing pattern.
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Figure III - fast growing domains. The system parameters are: a = -36.38, b = 43.6,
d = 23.2, γ = 29.08, 1 time unit, initial displacement at 0.2. Left column: domain
growth for each growth function, Right column: di�erence from steady state value of
u at end of time period. First row: �nal length of 2, Second row: �nal length of 6.
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Figure IV - fast growing domains. The system parameters are: a = -36.38, b = 43.6,
d = 23.2, γ = 29.08, 1 time unit, initial displacement at 0.2, �nal domain length of 6.
Left: linear growth, Right: exponential growth

5 Conclusion

Turing instability on a growing domain was investigated. Three di�erent methods for
incorporating domain growth into the model were devised. Of these, the second grow-
ing method (which incorporated the e�ects of the growing domain on di�usion), was
thought to model most real-life applications. For small growth rates, the three meth-
ods gave almost identical results (as expected). However, larger growth rates showed
signi�cant di�erences.

Three growth functions; linear, exponential and logarithmic, were also used, giving
di�ering results. If the domain growth was too fast however, no pattern was produced.
Further investigation into this matter could be made. For example, can we derive the
growth rate at which patterning fails? Is this point a function of the model parameters
(eg. a, b etc.)?

Also, an exponential function is often used for growth in literature, but it is surely
not a realistic model for all domain growth. More research could be done on realistic
growth functions/functions derived from empirical data.
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A Deriving conditions for Turing instability on �xed

domains

If λ1, λ2 are eigenvalues of J then λ1λ2 = |J | and λ1 + λ2 = Tr(J). For (u0, v0) to be
stable without di�usion, both eigenvalues need to be negative. As such, two conditions
on the Jacobian's entries can be derived;

|J | > 0 ⇒ FuGv −GuFv > 0

Tr(J) < 0 ⇒ Fu +Gv < 0

To �nd the conditions that ensure an unstable state is obtained with di�usion, �rst
assume that w is of the form below.

w = w0e
ikxeλt

and so wxx = w0(ik)
2eikxeλt = −k2w

The assumption of w's form holds for an unbounded domain. For a bounded domain
with Neumann boundary conditions, we need to assume that w = w0 cos(ikx)e

λt. Of
course, this alternate form still gives the same form for wxx.

Substituting for wxx and letting wt = 0 gives:

0 = (J − k2D)w = |J − k2D|

Let A = J − k2D. As such, the trace of A is:

Tr(A) = Fu − k2 +Gv − k2d = Fu +Gv − k2(1 + d)

Recall that as a ratio of di�usivities, d cannot be negative. Also, Fu + Gv < 0 by
condition 1. Hence, Tr(A) < 0. As Tr(A) = λa+λb (where λa, λb are the eigenvalues of
A), at least one eigenvalue must therefore be negative. However, if both are negative,
then a stable state is reached. The eigenvalues must then be of opposite signs and the
determinate of A negative:

|A| = λaλb < 0

(Fu − k2)(Gv − k2d)−GuFv < 0



FuGv −GuFv − k2(Gv + dFu) + k4d < 0

|J | − k2(Gv + dFu) + k4d < 0 (5)

Recall that |J | > 0. Thus Gv + dFu > 0 for (5) to hold. This is condition 3.

Letting K = k2, the left-hand-side of equation 5 becomes a quadratic in K:

|J | −K(Gv + dFu) +K2d < 0

To ensure a real K (and hence k), then the following must be true:

(Gv + dFu)
2 − 4d|J | > 0

which is condition 4.


