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Introduction

Minimal surfaces are beautiful geometric objects in surface theory. As the name sug-
gests, they have least possible area subject to some constraint. They are realised in
a variety of contexts, including soap films spanning a wire frame and the black hole
horizon in general relativity. My project focuses on investigating elementary minimal
surface theory, including several canonical examples of them and the Weierstrass repre-
sentations. In particular, we first develop relevant background in differential geometry
and partial differential equations (PDE), and use well-known examples of minimal sur-
faces such as Enneper’s surface and catenoids to enhance our understanding. Then
we turn to the main goal of the project, to establish the Weierstrass representations
for minimal surfaces, which provides an effective way to generate examples of minimal
surfaces and classify all of them. Future work involves investigating the application
of a Weierstrass-like representation for biharmonic surfaces with a view towards new
results on Chen’s conjecture.

Preliminaries

In order to achieve the goal of this project, we need some background concepts from
both differential geometry and complex analysis.

Regular Surface

In this work we only consider minimal surfaces that are regular surfaces in R3. We
start with the definition of such a surface. Intuitively, a regular surface is a smooth



surface, which allows us to perform basic calculus operations. It must have no sharp
points, edges or self-intersections so that for every point on the surface, there exists a
tangent plane. A precise definition is given by Do Carmo [1] as follows:

Definition 1. A subset S ⊂ R3 is a regular surface if for each p ∈ S, there exists
a neighbourhood V ⊂ R3 and a map f : U → V ∩ S of an open set U ⊂ R2 onto
V ∩ S ⊂ R3 such that

1. f is differentiable.

2. f is a homeomorphism (continuous with continuous inverse).

3. the regularity condition holds. i.e., for each q ∈ U , the differential dfq : R2 → R3

is one to one.

The mapping f is called a parametrisation or embedding.

In the above definition, condition 1 is necessary for performing differential calculus
on surface S. Condition 2 has the purpose of preventing self-intersection and sharp
points in S. It implies that the topology of S agrees with the subspace topology induced
by the inclusion S ⊂ R3. Condition 3 states that the Jacobian of f is rank 2, that is
one can find a 2×2 matrix inside the Jacobian which of full rank. This guarantees the
existence of a tangent plane at any point q(u0, v0) ∈ S, where two linearly independent
vectors ∂uf(q) and ∂vf(q) form a base of it.

Mean Curvature

To understand the nature of a surface, we need tools to describe how the surface bends.
Curvature is a measurement of how much the surface bends towards the normal vector
at a point p on the surface. A curvature at p in a tangential direction X is 1

ρ
where ρ

is the radius of the osculating circle at p tangential to X if the surface bends toward
the normal vector at p and −1

ρ
otherwise. At each point p, the principal curvatures are

the maximal and minimal curvatures through p, denoted by κ1 and κ2. We can hence
define the mean curvature as follows

Definition 2. The mean curvature of a surface S at p is

H = κ1 + κ2.



However, this definition is not easy to apply as the principal curvatures are not
easy to compute. We will introduce two tools to help us.

Definition 3 (the First Fundamental Form). [1] [4] The first fundamental form I of
a surface element is the restriction of 〈 , 〉 to all tangent planes Tp(S), that is,

I(X, Y ) := 〈X, Y 〉 .

In R3, it is denoted by the 2× 2 matrix gij, where

gij = 〈∂if, ∂jf〉 =

(
E F
F G

)
.

Definition 4 (the Second Fundamental Form). The second fundamental form is the
2× 2 matrix Aij, given by

Aij = 〈∂i∂jf, ν〉 =

(
e f
f g

)
.

where ν is a unit normal,

ν(u, v) =
∂uf × ∂vf
|∂uf × ∂vf |

.

Now we can express the mean curvature H in terms of the coefficients of first and
the second fundamental forms.

Lemma 5. The mean curvature H can be expressed as

H = κ1 + κ2 = trace
(
gikAkj

)
=
Eg +Ge− 2Ff

EG− F 2
. (1)

Using this formula, we can easily compute the mean curvature of a parametrised
surface with parametrisation f . Notice that H(p) = φ(p) where φ : Σ→ R3 is a partial
differential equation.

Area Functional and Minimal Surface

We can define the surface area functional in terms of the first fundamental form.



Definition 6 (Surface Area). Suppose f : Σ→ S ⊂ R3, the surface area of S is given
by

Area(f) =

∫
Σ

|∂uf ∧ ∂vf | du dv

=

∫
Σ

√
EG− F 2 du dv

=

∫
Σ

√
det g du dv

=

∫
Σ

dµ.

In order to study the local behaviour of the surface area functional, we look at
the first variation of the functional, which is an analogue to the first derivative of a
function.

Definition 7. Let f : Σ → R3 be a smooth closed immersed surface. A normal
perturbation of f with speed η : Σ→ R is defined as

f̂(p, ε) = f(p) + εη(p)ν(p)

where ν is a choice of unit normal and ε ∈ R.

The first variation of f is expressed as

lim
ε→0

f̂(p, ε)− f(p)

ε
=

d

dε
f̂(p, ε)

∣∣∣∣
ε=0

.

Lemma 8. Let f : Σ → R3 be a smooth closed immersed surface. The first variation
of surface area can be written in terms of the mean curvature H as follows:

d

dε
Area(f̂)

∣∣∣∣
ε=0

= −
∫

Σ

Hηdµ .

From the above lemma, we can see if H = 0, then irrespective of the speed η, the
first variation of the area functional is zero. This means H = 0 is a critical point for
the area functional. In order to check if it is a local minimum, maximum or saddle
point, we need the second variation.

By now, we can see one reasonable way to define minimal surfaces is as following:



Definition 9 (Minimal Surface). A minimal surface is a surface S with mean curvature
H = 0 at all points p ∈ S.

Referring to equation (1), a minimal surface must fulfil the following PDE

Eg +Ge− 2Ff

EG− F 2
= 0. (2)

The above property is a property of the surface itself, regardless the parametrisa-
tion. However, a specific type of parametrisation is particularly useful in this work,
which is known as an isothermal parametrisation.

Definition 10. A parametrisation X is isothermal or conformal if

E = 〈∂uX, ∂uX〉 = 〈∂vX, ∂vX〉 = G and F = 〈∂uX, ∂vX〉 = 0.

With such a parametrisation, we can simplify equation (2) and have the following
result

Lemma 11. Let S be a surface with isothermal parametrisation. Then S is minimal
if and only if e = −g.

One concern is that some common parametrisations of minimal surfaces are not
isothermal, but the following theorem shows that requiring minimal surfaces to have
an isothermal parametrisation is not an essential restriction.

Theorem 12. Every minimal surface in R3 has a locally isothermal parametrisation.

Complex Analysis

Several concepts from complex analysis are essential for the study of the Weierstrass
Representation for minimal surfaces.

Definition 13 (Holomorphic Function). Suppose f is a function of a complex variable
and that a ∈ C. Suppose also that some neighbourhood of a lies within the domain of
definition of f . Then the derivative of f at a is the limit

f ′(a) = lim
z→a

f(z)− f(a)

z − a
.

We say that f is complex differentiable at a if the limit exists. If f is complex differ-
entiable at every point a in an open set D, we say that f is holomorphic on D.



If a complex function f(z) = f(u + iv) = x(u, v) + iy(u, v) is holomorphic, then x
and y have first partial derivatives with respect to u and v, and satisfy the Cauchy-
Riemann equations:

∂x

∂u
=
∂y

∂v
and

∂x

∂v
= −∂y

∂u
,

or, equivalently, the Wirtinger derivative of f with respect to the complex conjugate
of z is zero:

∂f

∂z̄
= 0.

Definition 14 (Wirtinger Derivatives). Let f be a function of one complex variable
having the form f(z) = x(u, v) + iy(u, v), the Wirtinger derivatives are defined as

∂f

∂z
=

1

2

(
∂x

∂u
+
∂y

∂v

)
+
i

2

(
∂y

∂u
− ∂x

∂v

)
,

∂f

∂z̄
=

1

2

(
∂x

∂u
− ∂y

∂v

)
+
i

2

(
∂y

∂u
+
∂x

∂v

)
.

We call ∂
∂z

and ∂
∂z̄

the Wirtinger operators.

Definition 15 (Harmonic Functions). Let f be a function of one complex variable
having the form f(z) = x(u, v) + iy(u, v), f is called harmornic if ∂uuf + ∂vvf = 0.

Definition 16 (Meromorphic Function). Suppose f : Ω ⊂ C → C, f is said to be
meromorphic if there exists isolated points zi, such that f̃ : Ω\{zi} → C is holomorphic.

In addition, the points {zi} are called poles of the function. The order of the pole
zi is the number of terms that vanish in the Laurent series expansion around zi.

Weierstrass Representations for Minimal Surfaces

The study of minimal surfaces originates with Lagrange in 1776. He derived a PDE
to describe such surfaces, but he did not succeed in finding any solution except for
the plane. Progress in the study of minimal surfaces was slow. For almost a hundred
years, only a few more examples such as the catenoid and Scherk’s surfaces were found.
Motivated by the classification and generation of examples, in the 1860s Weierstrass
and Enneper developed some useful representation formulae linking minimal surfaces
to complex analysis.

Minimal surfaces of revolution are particularly easy to classify as the theorem below
demonstrates:



Theorem 17. [3] Each complete minimal surface of revolution is either a plane or a
catenoid

f : R× [0, 2π)→ R3, f(t, θ) := (x(t) cos θ, x(t) sin θ, t)

with x(t) := a cosh

(
t− t0
a

)
for t0 ∈ R, a > 0.

(3)

Proof. We first recall that any surface of revolution is obtained by rotating a generating
curve (x, z) : I → (0,∞)×R in the xz-plane about the z-axis. It can be parametrised
by

f : I × R→ R3, f(t, θ) := (x(t) cos θ, x(t) sin θ, z(t)) .

Then, the zero mean curvature equation (2) can be rewritten as an ODE with
respect to t,

x (x′z′′ − z′x′′) + z′
(
x′2 + z′2

)
= 0.

It is easy to check that for the special case h ≡ const the above equation is satisfied.
This corresponds to a horizontal plane without the point P := (0, 0, z) and it becomes
complete by taking the union with P .

Now we consider the case when h is not identically constant. Then there is t0 ∈ I
with h′(t0) 6= 0. Hence, h is locally monotone, and by a re-parametrisation of the
generating curve we may assume h(t) = t locally. This helps us to simplify down the
minimal surface equation to

xx′′ = x′2 + 1, x > 0. (4)

We solve this ODE by using the substitution x′ = y, then separation of variables:

(4) =⇒ xy′ = y2 + 1

1

x
=

y′

y2 + 1

ln(x) = ln
(
y2 + 1

) 1
2 + C0

x2 = C1

(
x′2 + 1

)
.

It is not hard to check that (3) is a solution to the ODE, with C1 = a2.
We should now check if this is the only solution. Notice that the ODE system

x′ = y and y′ = (1 + y2)/x is Lipschitz for r > ε > 0 and so this system satisfies
the Picard-Lindelöf theorem, hence the solution is unique. Moreover, this family of
solution are defined for all t ∈ R and hence complete.

Now we can conclude that all solutions are of the type claimed.



From now on, we will be focusing on establishing the Weierstrass Representations
with our existing foundation. This involves combining complex analysis and classical
minimal surface theory.

Theorem 18. If the parametrisation X is isothermal, then

∂uuX + ∂vvX = EHν,

where E is coefficient of the first fundamental form, H is mean curvature and ν is an
unit normal.

Proof. [2] The set {∂uX, ∂vX, ν} forms an orthonormal basis for R3. We can express
the vector ∂uuX and ∂vvX in terms of these bases vectors. That is,

∂uuX = Γuuu∂uX + Γvuu∂vX + 〈∂uuX, ν〉 ν,
∂vvX = Γuvv∂uX + Γvvv∂vX + 〈∂vvX, ν〉 ν.

Where Γuuu,Γ
v
uu,Γ

u
vv and Γvvv are known as Christoffel symbols, indicating the tangential

projection of the second derivative. i.e., Γkij∂kX = (∂i∂jX)T .
By comparing ∂uE to 〈∂uuX, ∂uX〉, we have

1

2
∂uE = 〈∂uuX, ∂uX〉 = Γuuu 〈∂uX, ∂uX〉+ Γvuu 〈∂vX, ∂uX〉+ 0

= ΓuuuE + ΓvuuF

= ΓuuuE,

hence

Γuuu =
∂uE

2E
.

Similarly, we can derive all four Christoffel symbols mentioned above, and obtains

∂uuX =
∂uE

2E
∂uX −

∂vE

2G
∂vX + eν,

∂vvX = −∂uG
2E

∂uX +
∂vG

2G
∂vX + gν.

Using the mean curvature equation (1) and properties of isothermal parametrisation,
it is now straight forward to show that ∂uuX + ∂vvX = EHν.



Corollary 19. A surface S with an isothermal parametrisation X(u, v) =
(x1(u, v), x2(u, v), x3(u, v)) is minimal ⇐⇒ x1, x2, x3 are harmonic functions.

Proof. From Theorem 18, we observe that ∂uuX+∂vvX = 0 if and only if H = 0, since
both E 6= 0 and ν 6= 0. Hence the coordinate functions are harmonic if and only if
H = 0, implying S is minimal.

Lemma 20. Let f be a function of one complex variable having the form f(z) =
x(u, v) + iy(u, v), we have

4

(
∂

∂z̄

(
∂f

∂z

))
= ∂uuf + ∂vvf. (5)

Proof. This result can be easily proved by applying the Wirtinger derivatives on LHS
and the usual derivatives on the RHS.

Theorem 21. [2] Let S be a surface with parametrisation X = (x1, x2, x3) and let
φ = (ϕ1, ϕ2, ϕ3), where ϕk = ∂xk

∂z
. Then X is isothermal ⇐⇒ φ2 = (ϕ1)2 + (ϕ2)2 +

(ϕ3)2 = 0. If X is isothermal, then S is minimal ⇐⇒ each xk is harmonic ⇐⇒
each ϕk is holomorphic.

Proof. We compute (ϕk)
2 by applying the Wirtinger operators. As all xk are real

functions, the complex components are simply zero.

(ϕk)
2 =

(
∂xk
∂z

)2

=

[
1

2

(
∂xk
∂u
− i∂xk

∂v

)]2

=
1

4

[(
∂xk
∂u

)2

−
(
∂xk
∂v

)2

− 2i
∂xk
∂u

∂xk
∂v

]
.



Hence we obtain

φ2 = (ϕ1)2 + (ϕ2)2 + (ϕ3)2

=
1

4

[
3∑

k=1

(
∂xk
∂u

)2

−
3∑

k=1

(
∂xk
∂v

)2

− 2i
3∑

k=1

∂xk
∂u

∂xk
∂v

]
=

1

4
(〈∂uf, ∂uf〉 − 〈∂vf, ∂vf〉 − 2i 〈∂uf, ∂vf〉)

=
1

4
(E −G− 2iF ).

Then X is isothermal ⇐⇒ E = G,F = 0 ⇐⇒ φ2 = 0.
The second part is easy to show. By Corollary 19, it is sufficient to show xk is

harmonic ⇐⇒ ϕk is holomorphic. With Lemma 20, we see that

∂uuxk + ∂vvxk = 4

(
∂

∂z̄

(
∂f

∂z

))
= 4

(
∂

∂z̄
(ϕk)

)
.

By Definitions 13 and 15, xk is harmonic and ϕk is holomorphic simultaneously if and
only if the above expression equal to zero.

Now we are very close to establishing the representation formulae. We will need
to solve ϕk = ∂xk

∂z
for xk to get a formula for constructing minimal surfaces by finding

suitable holomorphic functions ϕk.

Lemma 22. Let φ = (ϕ1, ϕ2, ϕ3) with ϕk being holomorphic functions such that

ϕ2
1 + ϕ2

2 + ϕ2
3 = 0 and |φ|2 6= 0 and is finite,

we have the parametrisation

X =

(
Re

∫
ϕ1(z)dz,Re

∫
ϕ2(z)dz,Re

∫
ϕ3(z)dz

)
representing a minimal surface.

Proof. We first look at the constraints we have. If we have φ2 = 0 then X is isothermal



and the following

|φ|2 =

∣∣∣∣∂x1

∂z

∣∣∣∣2+

∣∣∣∣∂x2

∂z

∣∣∣∣2+

∣∣∣∣∂x3

∂z

∣∣∣∣2
=

1

4

[
3∑

k=1

(
∂xk
∂u

)2

+
3∑

k=1

(
∂xk
∂v

)2
]

=
1

4
(〈∂uf, ∂uf〉+ 〈∂vf, ∂vf〉)

=
1

4
(E +G)

=
E

2

shows we must have |φ|2 6= 0 for these surfaces to exist.
We solve ϕk = ∂xk

∂z
for xk. Notice that xk is a function of two variables z and z̄, but

we want to have a representation with respect to one variable. This can be achieved
using differentials [6]. We first observe that

dxk =
∂xk
∂u

du+
∂xk
∂v

dv and (6)

dz = du+ idv.

Using the Wirtinger derivatives, we have

ϕkdz =
∂xk
∂z

dz =
1

2

(
∂xk
∂u
− i∂xk

∂v

)
(du+ idv)

=
1

2

[
∂xk
∂u

du+
∂xk
∂v

dv + i

(
∂xk
∂u

dv − ∂xk
∂v

du

)]
,

ϕkdz =
∂xk
∂z

dz =
1

2

(
∂xk
∂u

+ i
∂xk
∂v

)
(du− idv)

=
1

2

[
∂xk
∂u

du+
∂xk
∂v

dv − i
(
∂xk
∂u

dv − ∂xk
∂v

du

)]
.

Adding these gives

ϕkdz + ϕkdz =
∂xk
∂u

du+
∂xk
∂v

dv = 2Re{ϕkdz}. (7)

Combining (6) and (7), we have

dxk = 2Re{ϕkdz}.



Hence by Cauchy’s integral formula, xk = 2Re
∫
ϕkdz+Ck. Since the constants Ck

and 2 are just translating and scaling factors and do not change the geometric shape
of the surface, we can simply discard them and leave the coordinate function to be

xk = Re

∫
ϕkdz

as desired.

Following Lemma 22, there is only one step left to construct the Weierstrass Rep-
resentations i.e., determining ϕk. As one may guess, there are different approaches to
this and there are also different forms of Weierstrass Representation [5]. Here we will
only introduce one most common form having two complex functions as parameters.

Theorem 23 (Weierstrass Representation(p,q)). [2] Every regular minimal surface
has locally an isothermal parametrisation of the form f(z) equal to(

Re

{∫ z

p(1 + q2)dw

}
,Re

{∫ z

−ip(1− q2)dw

}
,Re

{∫ z

−2ipq dw
})

in some domain D ⊆ C, where p is holomorphic and q is meromorphic in D, with p
vanishing at the poles of q and having a zero of order at least 2m wherever q has a pole
of order m.

Proof. The conditions placed on p and q ensure that p, pq2, and pq are holomorphic,
therefore ϕk are holomorphic. We compute

φ2 =
[
p(1 + q2)

]2
+
[
−ip(1− q2)

]2
+ [−2ipq]2

=
[
p2 + 2p2q2 + p2q4

]
−
[
p2 − 2p2q2 + p2q4

]
−
[
4p2q2

]
= 0,

and ∣∣ϕ∣∣2 =
∣∣p(1 + q2)

∣∣2+
∣∣−ip(1− q2)

∣∣2+
∣∣−2ipq

∣∣2
= |p|2

[
(1 + q2)(1 + q̄2) + (1− q2)(1− q̄2) + 4qq̄

]
= 4|p|(1 + |q|2) 6= 0.

We conclude that the chosen functions ϕk (k = 1, 2, 3) satisfy Lemma 22 as required.
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