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1 Introduction

Gödel’s Incompleteness Theorem, proven in 1931, shows that if a theory capable of
expressing elementary arithmetic with recursively enumerable axioms is consistent,
then a statement can be formed in that theory that is true, but cannot be proven so.
The proof of Gödel’s Theorem is constructive: that is to say if one starts with a set
of axioms that fits the conditions, then the proof leads to a statement that is true
but not provable under those axioms. The Peano axioms are an example of such a
theory, and there is hence a readily available example of a statement that is true but
not provable under Peano arithmetic. However, Gödel’s proof is heavily logical, and
leads to a statement that is not particularly natural.

The unprovable nature of Gödel’s statement arises in part from self-reference: the
statement can essentially be thought of as the phrase “This statement cannot be
proven”. During the 20th century some accessible examples were found of statements
that can be expressed in the language of a basic system, are provably true using higher-
order techniques, but are not provable in the basic system. Moreover, these properties
are not self-referential in nature.

The unprovability of the theorems examined in this paper arises from their ex-
traordinarily large growth. In fact, a standard method of asserting unprovability is to
show that numbers involved with the properties grow too fast to be defined in that
system. For example, the Goodstein Sequence for 2 and 3 reach 0 after 3 and 6 steps
respectively. However, the Goodstein Sequence for 4 reaches 0 after an astounding
3 × 2402,653,211 − 3 steps [2]. The length of the Goodstein Sequence for 5 is greater
than the fourth Ackermann function at 4. Furthermore, the length of Friedman’s long
finite sequences involving k characters, denoted n(k), begins with n(1) = 3, n(2) = 11,
but n(3) becomes incomprehensibly large to the point that it is known to be greater



than the 7,198th Ackermann function at 158,386 [3]. His TREE function, describing a
sequence involving trees, grows even faster, with TREE(3) > n(4) [10].

This paper will first give the necessary background information to prove four un-
provable theorems, with significant focus on ordinals. The sections afterwards will be
dedicated to proving the theorems. Due to time constraints, the unprovability of the
theorems will not be explored in-depth. However, some comments will be given.

2 Preliminaries

2.1 Peano Axioms

The Peano Axioms, sometimes called the Dedekind-Peano Axioms were first introduced
by Richard Dedekind in 1888 as a set of axioms to describe the natural numbers.
They were later presented more precisely by Giuseppe Peano in 1889. Since then,
they have remained nearly completely unchanged in their use in metamathematical
investigations. One such application is in questions of completeness and consistency
of number theory. The Peano Axioms are as follows.

Definition 2.1 A set N along with a function S : N 7→ N (called the successor func-
tion) is said to be a set of natural numbers if the following conditions hold:

1. 0 ∈ N

2. If n ∈ N then S(n) ∈ N

3. S(n) 6= 0 for all n ∈ N

4. For all n,m ∈ N, if S(n) = S(m) then n = m.

5. If 0 has property P and for every n ∈ N, and the condition “S(n) has property
P provided n has property P” holds, then for every n ∈ N, n has property P .

The fifth axiom is known as the induction axiom. For this paper, we will have 0 = ∅
and S(n) = n ∪ {n}. This gives 1 = S(0) = ∅ ∪ {∅} = {∅}, 2 = S(1) = 1 ∪ {1} =
{∅} ∪ {{∅}} = {∅, {∅}}, 3 = 2 ∪ {2} = {∅, {∅}, {∅, {∅}}} and so on. For ease of
notation, this will be written as 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2} and so on. In this
sense, a natural number can be thought of as the set of all natural numbers that it is
greater than. In fact, it will be proven now.

Lemma 2.2 If n ∈ N then n = {m ∈ N : m < n}.



Proof: Firstly, 1 = ∅ ∪ {∅} = {∅} = {0}. So 1 = {m ∈ N : m < 1}. Now assume
that the result holds for some n ∈ N. Then n + 1 = n ∪ {n}. Since ∀m < n, m ∈ n,
it follows that ∀m < n, m ∈ n + 1. Also, by definition, n ∈ n + 1. Additionally, let
m ∈ n+ 1 = n∪ {n}. So either m = n or m ∈ n, i.e. m ≤ n. Hence, by induction, the
result holds.

2.2 Ordinals

The ordinal numbers are an extension of the natural numbers that are used to identify
well-ordered sets. Two ordered sets are said to have the same order type if and only if
they are order-isomorphic. Any well-ordered set is isomorphic to an ordinal number,
and as such, the ordinal numbers are used to describe the order types of well-ordered
sets. Their applications are fruitful, showing significant use in proof theory, and in this
paper are used in Section 3 to prove that any Goodstein Sequence terminates and in
Section 1 to show that any strategy against a hydra is a winning strategy.

Definition 2.3 A non-empty set A along with a relation ≤ is said to be an ordered
set if ≤ is reflexive, transitive and antisymmetric. That is, for all a, b, c ∈ X

1. a ≤ a,

2. a ≤ b and b ≤ c =⇒ a ≤ c,

3. a ≤ b and b ≤ a =⇒ a = b.

Definition 2.4 An ordered set A is a chain if and only if for all a, b ∈ A, either a ≤ b
or b ≤ a.

Definition 2.5 If an ordered set A is a chain then A is said to be well-ordered if and
only if every non-empty subset of A has a minimum.

Definition 2.6 A well-ordered set α is defined to be an ordinal number if it has the
following properties:

1. α is well-ordered

2. If β ∈ α then β ⊆ α

The natural numbers defined by 0 = ∅ and S(n) = n ∪ {n} can be shown to be
ordinals. Condition (1) holds since a natural number is a finite chain. Condition (2)
holds following Lemma 2.2. Additionally, the set of natural numbers is an ordinal,
with its order type denoted ω.



Definition 2.7 The order relation on the ordinals is defined as follows. For two or-
dinals α and β, α < β if and only if α ∈ β. Also, α ≤ β if and only if α < β or
α = β.

Remark 2.8 Strictly speaking, this is not a relation on every ordinal, since the totality
of all ordinals cannot form a set. Formally, the ordinals form a class. Briefly, if Ω is
the set of all ordinals, then Ω is an ordinal as well. Then Ω + 1 (with addition to be
defined next) is an ordinal as well, so Ω + 1 ∈ Ω. Then Ω < Ω + 1 and Ω + 1 < Ω, a
contradiction. As a relation applies to a set, the ordering on ordinals inevitably leaves
out some ordinals. However, since the relation can be applied to an arbitrary set of
ordinals, no issues are encountered.

Theorem 2.9 Any set of ordinals is well-ordered by <.

Proof:Let A be a set of ordinals. Let α ∈ A and let B = {γ ∈ A : γ < α}. If B
is empty, then α is the minimal element of A. Assume B is non-empty. Since α is
well-ordered and B ⊆ α, let β be the minimum of B. Then β is also the minimum of A.
Hence, any set of ordinals has a minimum, and thus any set of ordinals is well-ordered.

As the ordinal numbers are an extension of the natural numbers, it is to be expected
that standard arithmetical operations of addition, multiplication and exponentiation
are also defined.

Definition 2.10 Let α, β be ordinal numbers. The sum α + β of α and β is defined
as the order type of the set ({0} × α) ∪ ({1} × β) ordered by the following rule:

(i, ξ) ≤ (j, ζ) ⇐⇒ i < j or (i = j and ξ ≤ ζ)

Definition 2.11 Let α, β be ordinal numbers. The product α · β of α and β is the
order type of the Cartesian product β × α ordered by the following rule:

(ξ, ζ) ≤ (µ, η) ⇐⇒ ξ < µ or (ξ = µ and ζ ≤ η)

Note that ordinal addition and multiplication is not necessarily commutative. For
example, 1 +ω = ω 6= ω+ 1 and 2 ·ω = ω 6= ω ·2 = ω+ω. In fact, for any two ordinals
α, β, if α < β, then α + β = β.

The next definition is required to define ordinal exponentiation.

Definition 2.12 An ordinal α is said to be a successor ordinal if and only if there
is another ordinal number β such that β + 1 = α. An ordinal α is said to be a limit
ordinal if and only if it is not a successor ordinal.



Definition 2.13 Let α and β be ordinal numbers. Then ordinal exponentiation is
defined as follows:

If β = 0 then αβ = 1.
If β is a successor ordinal, choose γ such that β = γ + 1. Then αβ = (αγ) · α.
If β is a limit ordinal, and α = 0 then αβ = 0. If α 6= 0 then αβ is the supremum

of the set {αγ : γ < β}.

Next, an extension of mathematical induction from natural numbers to any well-
ordered set is given.

Theorem 2.14 (Principle of Transfinite Induction [6]) Let A be a well-ordered
set and let B ⊆ A. If the following condition holds for any x ∈ A

{y ∈ A : y < x} ⊆ B =⇒ x ∈ B

then B = A.

Proof: Assume that A \ B 6= ∅ and assume that the inductive condition given
above holds. Let x = min(A \ B). As x is minimal, no elements of {y ∈ A : y < x}
are in A \B. So {y ∈ A : y < x} ⊆ B, and hence x ∈ B, which contradicts x ∈ A \B.
Hence, A \B = ∅, i.e. B = A.

This allows induction over any well-ordered set and is adapted to an inductive
argument by defining the set B ⊆ A to be the set of elements for which a property P
is true.

Finally, in order to present the main result of this section, the following two re-
sults are stated without proof, adapted from the website ProofWiki (http://www.
proofwiki.org).

Theorem 2.15 (Division Theorem For Ordinals [7]) Let α and β be ordinals with
β 6= 0. Then there exist unique ordinals γ and µ such that α = (β ·γ)+µ where µ < β.

The Division Theorem For Ordinals is essentially an ordinal version of Euclid’s Division
Algorithm for integers.

Lemma 2.16 (Unique Ordinal Exponentiation Inequality [8]) Let α and β be
ordinals with α > 1 and β > 0. Then there exists a unique ordinal γ such that
αγ ≤ β < αγ+1.

Once again, the Unique Ordinal Exponentiation Inequality is a generalisation to the
ordinals of the statement that if n and x are natural numbers with n > 1, then n will
lie between two successive powers of x.



Definition 2.17 If α is an ordinal and can be written in the following form

k∑
i=1

ωai · bi

where k ∈ N, a1, a2, . . . , ai is a strictly decreasing sequence of ordinals, and each bi ∈ N,
then this form is said to be the Cantor Normal Form of α.

This concludes the machinery required to derive the main result of this section, as
follows. The proof is adapted from ProofWiki [9].

Theorem 2.18 Any ordinal α can be uniquely written in Cantor Normal Form.

Proof: Let α be an ordinal with α > 0. Assume that ∀ξ < α there exists a unique
Cantor Normal Form of ξ.

Since ω > 1, by the Unique Ordinal Exponential Inequality, there exists a unique
ordinal γ such that

ωγ ≤ α < ωγ+1.

Now by The Division Theorem For Ordinals, there exists unique ordinals β, ν where
ν < ωγ such that

α = ωγ · β + ν

Since α < ωγ+1, it follows that β < ω. Now if ν = 0, the statement holds true with
α = ωγ · β. Assume that ν 6= 0. As stated above, ν < ωγ so by the Unique Ordinal
Exponential Inequality, ν < α. Hence, by the inductive hypothesis, there is a unique
Cantor Normal Form for ν, i.e.

ν =
n∑
i=1

ωci · di

for some n, di < ω and some strictly decreasing sequence of ordinals c1, c2, . . . , cn.
Hence,

α = ωγ · β +
n∑
i=1

ωci · di.

Then set a1 = γ, ai+1 = ci and b1 = β, bi+1 = di. Then

α =
n+1∑
i=1

ωai · bi.



Also, since γ, β and ν are unique, as well as the Cantor Normal Form for ν, it follows
that the Cantor Normal Form for α is unique.

Finally, since the Cantor Normal Form for a natural number k is simply ω0 · k, the
result holds by transfinite induction.

Two ordinals in Cantor Normal Form can be compared by iteratively comparing
each term in succession. At the first difference, the ordinal which has the larger com-
ponent is the larger ordinal.

2.3 Trees

This section defines some basic properties of trees, which are used for Paris and Kirby’s
Hydra Game, and for Friedman’s Internal Finite Tree Embeddings. It is concluded with
a proof of König’s Tree Lemma, which is used in proofs throughout the paper.

Definition 2.19 An ordered set T is called a (rooted) tree if there is a minimum
element of T , called the root node, and for each x ∈ T , the set {y : y ≤ x} forms a
chain. If T is finite, then it is called a finite tree.

Definition 2.20 Let T be a tree and let x, y ∈ T and assume x < y. Then y is called
a descendant of x. If there exists no z ∈ T such that x < z < y, then x is said to be
the parent node of y and y is said to be a child node of x.

Definition 2.21 Let T be a tree and let x ∈ T . A branch of x is the set {y ∈ T : y ≥
x}.

Definition 2.22 Let T be a tree and let x ∈ T . The valence of x is defined to be the
number of child nodes of x. If a node has valence 0, then it is said to be a top node.
The valence of T is defined to be the supremum of the valences of all its nodes. If the
valence of T is a natural number, then T is called finitely branching.

Definition 2.23 Let T be a tree and let x ∈ T . The height of x is the number of
elements in the set {y ∈ T : y < x}. The height of T is the supremum of the heights
of every x ∈ T .

Theorem 2.24 (König’s tree lemma) Let T be an infinite, finitely branching tree.
Then T has a branch of infinite length.



Proof: Let T be a tree. It will be shown that there is a sequence of nodes t1, t2, . . .
such that t1 is the root node, each tn+1 is a child of tn, and each tn has an infinite
number of descendants. Then the sequence t1, t2, . . . is the desired branch.

Let t1 be the root node of T . Suppose all children of t1 had a finite number of
descendants. Then t1 would also have a finite number of descendants, which would
mean T is finite. Hence, there is a child of t1 with infinite descendants. Let t2 be any
one of these children.

Now, suppose tn has infinitely many descendants. By the same argument as above,
tn has at least one child node with infinitely many descendants. Thus, let tk+1 be any
one of these nodes. Then the result holds by induction.

3 Goodstein’s Sequence

The first example involves a sequence first described by Goodstein [1]. Goodstein was
a finitist, meaning he believed in the philosophy of finitism, wherein a mathematical
object does not exist unless it can be constructed from the natural numbers in a finite
number of steps. In his paper, he made use of a more general version of the Goodstein
sequence to prove the restricted ordinal theorem under his philosophy, which asserts
that the set of ordinals less than ε0 is well-ordered.

However, due to his requirement for a constructive argument, Goodstein’s own
proof of termination is somewhat complicated. A simpler proof can be given that
requires only two conditions: that the ordinal numbers are well-ordered, and that a
corresponding ordinal sequence for a given Goodstein sequence is decreasing. Theorem
2.9 showed that any set of ordinals is well-ordered. The other condition will be shown
here.

The form of the sequence given in this section was described by Kirby & Paris [2].
In the same paper, it was shown that the sentence asserting that a given Goodstein
sequence terminates is not provable in first-order Peano Arithmetic.

Definition 3.1 Let m,n ∈ N with n > 1. Define the hereditary base n representation
of m recursively as follows: if m ≤ n write m as m. Otherwise, write m as a sum of
powers of n, with the exponents in hereditary base n representation.

For example, if m = 25 and n = 2, write 25 = 24 + 23 + 1 = 222 + 22+1 + 1. Or
if m = 45955 and n = 3, first write 45955 = 39 · 2 + 38 + 33 + 1 and then 45955 =
332 · 2 + 33·2+2 + 33 + 1.



Definition 3.2 Let m,n ∈ N with n > 1. Define the number Gn(m) as follows. If
m = 0 then Gn(m) = 0. Otherwise, write m in its hereditary base n representation.
Then Gn(m) is the result of replacing every n by n+ 1 and then subtracting 1.

For example, G2(25) = 333 + 33+1 and G3(45955) = 442 · 2 + 44·2+2 + 44.

Definition 3.3 Let m ∈ N. Define the Goodstein Sequence for m by m0 = m, mk =
Gk+1(mk−1) for any k > 1.

The Goodstein Sequence for m = 2 or m = 3 reach 0 rather quickly. For example,

20 = 2 30 = 21 + 1
21 = 31 − 1 = 2 31 = 31 + 1− 1 = 31

22 = 2− 1 = 1 32 = 41 − 1 = 3
23 = 1− 1 = 0 33 = 3− 1 = 2

34 = 2− 1 = 1
35 = 1− 1 = 0

However, for larger numbers, the Goodstein Sequence grows very rapidly. For example,

250 = 25 = 222 + 22+1 + 1

251 = 333 + 33+1 = 7625597485068

252 = 444 + 44 · 3 + 43 · 3 + 42 · 3 + 41 · 3 + 3 ≈ 10154

253 = 555 + 55 · 3 + 53 · 3 + 52 · 3 + 51 · 3 + 2 ≈ 102184

Next, in order to show that the Goodstein Sequence for m terminates, it is shown that
there is a decreasing sequence of ordinals in correspondence with the original sequence.

Definition 3.4 Let m,n ∈ N with n > 1. Define the ordinal on(m) as the result of
replacing every n with ω in the hereditary base n representation of m.

Note that on(m) = 0 if and only if m = 0.

Lemma 3.5 Let m ∈ N. For any Goodstein Sequence, (m0,m1,m2, . . .) =
(m,G2(m), G3(m1), . . .), there is a corresponding sequence of ordinals,
o2(m), o3(m1), o4(m2), . . . which is strictly decreasing.

Proof: Suppose n, ` ∈ N and n > 1, with

` = nk · ak + nk−1 · ak−1 + ...+ n · a1 + a0



and each ai < n.
For x ∈ N or x = ω, let

f `,n(x) =
k∑
i=0

xf
i,n(x) · ai,

with f 0,n(x) = 0. This function gives the result of writing ` in hereditary base n form
and then replacing each n with x. Note that f `,n(n+1) = Gn(`)+1 and f `,n(ω) = on(`).
Firstly,

on(`) =
k∑
i=0

ωf
i,n(ω) · ai,

and

Gn(`) =

(
k∑
i=0

(n+ 1)f
i,n(n+1) · ai

)
− 1.

Let j ≤ k be minimal such that aj 6= 0. If j = 0 then

Gn(`) =

(
k∑
i=1

(n+ 1)f
i,n(n+1) · ai

)
+ (a0 − 1).

And so

on+1(Gn(`)) =

(
k∑
i=1

ωf
i,n(ω) · ai

)
+ (a0 − 1),

then clearly, on(`) > on+1(Gn(`)).
Now assume j 6= 0. Then

Gn(`) =

(
k∑

i=j+1

(n+ 1)f
i,n(n+1) · ai

)
+ (n+ 1)f

j,n(n+1) · (aj − 1)

+

j−1∑
i=0

(n+ 1)f
i,n(n+1) · n.

So

on+1(Gn(`)) =

(
k∑

i=j+1

ωf
i,n(w) · ai

)
+ ωf

j,n(ω) · (aj − 1) +

j−1∑
i=0

ωf
i,n(ω) · n.



Both on+1(Gn(`)) and on(`) agree up until the jth term. The jth term in on+1(Gn(`))
is ωf

j,n(ω) · (aj − 1), and the jth term in on(`) is ωf
j,n(ω) · aj. Since aj > (aj − 1), it

follows that on(`) > on+1(Gn(`)).
Hence, the sequence o2(m), o3(m1), o4(m2), . . . is strictly decreasing.

Theorem 3.6 (Goodstein’s Theorem) For any m ∈ N, the Goodstein Sequence
for m eventually reaches zero.

Proof: By Lemma 3.5, for any Goodstein Sequence m,m1,m2, . . ., there is a corre-
sponding sequence of strictly decreasing ordinals. By Theorem 2.9, any set of ordi-
nals is well-ordered and hence this sequence is finite, i.e., there exists n ∈ N where
on+2(mn) = 0. Hence, mn = 0 and thus the Goodstein Sequence for m terminates.

4 The Hydra Game

The Hydra Game is visualised as a battle between Hercules and a hydra, where a hydra
is simply any finite tree. A head of a given hydra is any of its top nodes. Hercules
wishes to defeat the hydra by cutting off one head at a time, however, the hydra is
capable of growing new heads. A battle between Hercules and a hydra proceeds as
follows: at stage n ≥ 1 in the game, Hercules selects one head on the hydra to cut off.
Let a be the node that was cut and let b be the parent node of a. Firstly, remove a
from the tree. Then, if b is the root node, no new heads are grown. Otherwise, from
the parent of b, attach n copies of the branch of b after the cut. Figure 1 shows an
example of the first 3 stages of a battle.

A strategy for Hercules is a function that determines which head to cut from the
hydra at each stage. For some strategy σ, σ is a winning strategy if and only if it
eventually reduces the hydra to just the root node. As it turns out, every strategy is
a winning strategy, the proof of which will begin now.

Firstly, assign to each node v an ordinal f(v) defined as follows. Let C(v) denote
the set of children of v. If v is a top node, then f(v) = 0. Otherwise, f(v) = g(C(v))
where g is defined as follows.

For a set X of nodes in a tree, order the set X such that for v, w ∈ X, v < w iff
f(v) < f(w). Now label every element of X such that

v1 ≥ v2 ≥ · · · ≥ vk.

Then g(X) = ωf(v1) + ωf(v2) + · · ·+ ωf(vk).



(a) (b)

(c) (d)

Figure 1: In each image, the shaded node is the node that is cut off in the next stage. (a)
before stage 1, (b) after stage 1, (c) after stage 2, (d) after stage 3.

Figure 2: The ordinal assignment for each node in the hydra from Figure 1(a)

The ordinal assigned to a given hydra is the ordinal that is assigned to its root
node. An example of the ordinal assignment for the hydra in Figure 1(a) is shown in
Figure 2.

Lemma 4.1 For any strategy, the ordinal for the hydra at stage n will be greater than
the ordinal at stage n+ 1.

Proof: Consider the game at the stage n − 1. Let c be the node that is cut, let b be
the node that is replicated and let a be the node that the new nodes grow from. For
any node v, let v′ denote the same node after the cut.

After the cut, the children of node b′ will be C(b)\{c}. The children of node a′ will



be (C(a)\b)∪{n copies of b′} (i.e., the branch for b′ that remains as well as n−1 extra
copies). The label for node a′ will now be f(a′) = g((C(a) \ {b}) ∪ {n copies of b′}).

Now, as the children of b′ will be identical to the children of b with the exception
of node c, it follows that

f(b′) = g(C(b′)) = g(C(b) \ {c}) < g(C(b)) = f(b).

Now, consider the ordinal label for a,

f(a) = ωb1 · a1 + ωb2 · a2 + . . .+ ωbk · ak

where each ai ∈ N.
Assume that bj = f(b). Since f(b′) < f(b) it follows that

f(a′) = ωb1 · a1 + . . .+ ωbj · (aj − 1) + . . .+ ωb` · (al + n) + . . .+ ωbk · ak

where b` = f(b′).
If aj > 1 then comparing f(a′) and f(a) will have the first term difference between

ωbj · (aj − 1) and ωbj · aj. Then clearly, f(a′) < f(a).
If aj = 1 then the first term difference will be between ωbj+1 · aj+1 and ωbj · aj. By

defintion, bj > bj+1 and hence f(a′) < f(a).
Similarly, for any node v where a is a descendant of v, it will follow that f(v′) <

f(v). Since a descends from the root node r, it follows that f(r′) < f(r).
This concludes the requirements to prove the main result for this section.

Theorem 4.2 Any strategy is a winning strategy.

Proof: Let ri denote the root node of the ordinal at stage i for a given strategy.
By Lemma 4.1, the sequence of ordinals f(r1), f(r2), f(r3), . . . is a strictly decreasing
sequence. By Theorem 2.9, this sequence is well-ordered and hence is finite. Thus,
there exists n ∈ N such that f(rn) = 0. So, by definition, rn is a top node and hence
Hercules wins.

The statement “Every strategy is a winning strategy” was shown by Kirby and
Paris to be unprovable in Peano arithmetic by constructing a specific strategy which
cannot be proven to be winning [2].

5 Long Finite Sequences

In this section, a certain property of sequences will be observed, described by Friedman
[3]. It will be shown that for any finite alphabet, there is a longest finite sequence in



that alphabet for which no consecutive block xi, xi+1, . . . , x2i is a subsequence of a later
block xj, xj+1, . . . , x2j. Allowing n(k) to denote the longest possible length of such a
sequence, it will be seen that n(1) = 3, n(2) = 11, and that n(3) is incomprehensibly
large. The theorem that states there is a longest sequence for which the property holds
cannot be proven using two-quantifier logic. It requires, at minimum, three alternating
quantifiers.

For any set A, let A∗ denote the set of finite sequences from A, including the empty
sequence. Also, for any sequence x, let x[i] denote the i-th term of x.

Definition 5.1 Let k ≥ 1 and let x, y ∈ {1, . . . , k}∗. The sequence x is said to be a
subsequence of y if and only if there exist 1 ≤ i1 < i2 < · · · < in ≤ m such that for all
j ≤ n, x[j] = y[ij]. The definition also holds for infinite sequences x and y by omitting
“< in ≤ m”, and for finite sequence x and infinite sequence y by omitting “≤ m”.

Definition 5.2 Let k ≥ 1 and let x ∈ {1, . . . , k}. The sequence x has the Friedman
Property if and only if there does not exist i < j ≤ n/2 such that x[i], x[i+1], . . . , x[2i]
is a subsequence of x[j], x[j + 1], . . . , x[2j]. An infinite sequence x[1], x[2], x[3], . . . has
the Friedman Property if and only if there does not exist i < j such that x[i], x[i +
1], . . . , x[2i] is a subsequence of x[j], x[j + 1], . . . , x[2j].

If it exists, define n(k) to be the length of the longest finite sequence in {1, . . . , k}∗
with the Friedman Property.

Theorem 5.3 Let k ≥ 1 and let x be an infinite sequence from {1, . . . , k}. Then x does
not have the Friedman Property. Moreover, let y1, y2, . . . be elements of {1, . . . , k}∗.
Then there exists i < j such that yi is a subsequence of yj.

Proof: First we show that the second claim implies the first claim. Let x[1], x[2], . . .
be elements of {1, . . . , k}. Define yi = (x[i], x[i+ 1], . . . , x[2i]). Then according to the
second claim, there exists i < j such that yi is a subsequence of yj. Then the sequence
x[1], x[2], . . . does not have the Friedman Property.

Now assume that the second claim is false. Define a sequence of sequences y1, y2, . . .
where each yi ∈ {1, . . . , k}∗ as a bad sequence if and only if it is a counterexample to
the second claim.

Next, a minimal bad sequence is constructed in a technique first used by Nash–
Williams [5] which Friedman made use of in his paper. Let y1 ∈ {1, . . . , k}∗ be of
minimal length such that y1 starts some bad sequence. Let y2 ∈ {1, . . . , k}∗ be of
minimal length such that y1, y2 starts some bad sequence. Continue defining elements
in such a way such that y1, y2, y3, . . . is a bad sequence.



Now choose an infinite subsequence of yi’s such that the first term is the same for
each of them. Denote this list ȳ. Let n be defined such that yn = ȳ[1]. Now let the
sequence z be defined such that each zi is equal to ȳ[i] with the first term omitted.

Now, the sequence z is also a bad sequence. For if it were not, then there would
exist i < j such that zi is a subsequence of zj. But then ȳ[i] would be a subsequence
of ȳ[j], so y1, y2, y3, . . . would not be a bad sequence, contradicting its definition.

Similarly, the sequence y1, y2, . . . , yn−1, z1, z2, . . . is also bad. But z1 is shorter than
yn, violating the definition of yn as minimal. Hence, the second claim is true.

Theorem 5.4 Let k ≥ 1. Then there is a longest sequence from {1, . . . , k}∗ that has
the Friedman Property.

Proof: Consider the tree T of all elements of {1, . . . , k}∗ with the Friedman Property,
under extension (e.g. 122 is an extension of 12 which is an extension of 1) and rooted by
the empty sequence. Then T is a finitely branching tree. If T has infinitely many nodes,
then by König’s Tree Lemma 2.24, T has an infinite path. However, this infinite path
results in an infinite sequence with the Friedman Property, contradictory to Theorem
5.3. Hence, T has finitely many nodes.

Noting that if x, y ∈ {1, . . . , k}∗, x has the Friedman Property, and x extends y,
then y also has the Friedman Property. Hence, the height of the tree T will be the
length of the maximal sequences. That is, the height of T is n(k).

The next result is also due to Friedman. They will be stated without proof here
but can be found in Friedman’s paper [3]. The value for n(2) is simply a case-by-case
analysis of what a sequence can start with, and the result for n(1) is clear.

Theorem 5.5 n(1) = 3. n(2) = 11.

The longest sequence with the Friedman Property in {1}∗ is 111, and the longest
sequences in {1, 2}∗ are 12221111111 and 21112222222. However, there does not seem
to even be a glimpse of hope that one could write down the longest sequence with the
Friedman Property in {1, 2, 3}∗, for reasons which will soon become clear. Before this
result is presented, a version of the Ackermann hierarchy of functions is defined.

Definition 5.6 Define the function Ak(n) : N 7→ N as follows. A1(n) = 2n. Ak+1(n) =
Ak(Ak(Ak(· · ·Ak(1) · · · ))) where there are n copies of Ak.

For purposes of illustration, some calculations from [3] are given.



A3(1) = 2. A3(2) = 4. A3(3) = 16. A3(4) = 216 = 65, 536. A3(5) = 265,536

A4(1) = 2
A4(2) = A3(A3(1)) = A3(2) = 4
A4(3) = A3(A4(2)) = A3(4) = 216

A4(4) = A3(A4(3)) = A3(65, 536) = 22·
··
2

where there are 65,536 copies of 2.
It is fair to say thatA4(4) is a very large number, but it is not quite incomprehensible—

one could picture a tower of 2’s with a large height. However, A4(5) is a tower of 2’s
of height A4(4) which is arguably incomprehensible. One could imagine that A5(5) is
even larger, with Friedman proposing it as a sort of “benchmark” for incomprehensibly
large numbers. It is for these reasons that the following result is so remarkable.

Theorem 5.7 (Friedman’s Theorem 6.9 [3]) n(3) > A7198(158386).

It is the large growth of n(k) that results in its unprovable nature. The function n(k)
eventually dominates all provably recursive functions of 2-quantifier arithmetic, but is
a provably recursive function for 3-quantifier arithmetic. Hence, the statement “For all
k, n(k) exists” is provable in 3-quantifier arithmetic but not 2-quantifier arithmetic.

6 Internal Finite Tree Embeddings

Kruskal’s Tree Theorem, due to Joseph Kruskal, is a theorem asserting that for any
infinite sequence of trees, there is a tree that can be embedded into a later tree. Later,
Friedman showed that there are special cases of the theorem that cannot be proven
in first-order arithmetic [4]. Here, Friedman’s special case, called the Internal Finite
Tree Embedding Theorem, will be proven. In order to do so, firstly, some definitions
are given.

Definition 6.1 For a finite tree T and x, y ∈ T , the inf operation is defined such that
x inf y is the greatest z ∈ T such that z ≤ x and z ≤ y.

Let T1, T2 be finite trees. The function h is said to be an inf preserving embedding
from T1 into T2 if and only if the following conditions hold:

1. h : T1 7→ T2 is one-to one, and

2. for all x, y ∈ T1, h(x inf y) = h(x) inf h(y).

Definition 6.2 Define an n-labelled tree, where n ≥ 1, as a tree T along with a
function σ : T 7→ {1, . . . , n}. The function σ is called the label function for T.

Let T1, T2 be n-labelled trees with n ≥ 1 and respective labellings σ1, σ2. A function
h : T1 7→ T2 is said to be label preserving if and only if for all x ∈ T1, σ1(x) = σ2(h(x)).



Definition 6.3 Let T1, T2 be finite trees. The function h : T1 7→ T2 is defined to be
terminal preserving if and only if for all x ∈ T1, if x is a top node in T1, then h(x) is
a top node in T2.

Kruskal’s Tree Theorem, which will not be proven here, is as follows. The statement
of the theorem is adopted from Friedman [4], and a simple proof was developed by
Nash-Williams [5].

Theorem 6.4 (Kruskal’s Tree Theorem) Let T1, T2, . . . be an infinite sequence of
finite trees. Then there exist i, j ∈ N such that i < j and there is an inf-preserving
embedding from Ti into Tj.

The following theorem is given by Friedman as a special case of Kruskal’s Tree
Theorem.

Theorem 6.5 [4] Let n ≥ 1 and T1, T2, . . . be an infinite sequence of finite n-labelled
trees. Then there exists i, j ∈ N such that i < j and there is an inf and label preserving
embedding from Ti into Tj.

This allows the following theorem to be derived.

Theorem 6.6 Let n ≥ 1 and T1, T2, . . . be an infinite sequence of finite n-labelled
trees. Then there exists i, j ∈ N such that i < j and there is an inf, label and terminal
preserving embedding from Ti into Tj.

Proof: Let T ′1, T
′
2, . . . be 2n-labelled trees derived from T1, T2, . . . where each node of

valence 0 has n added to its label, and every other node remains the same. Then
the sequence T ′1, T

′
2, . . . meets the conditions for Theorem 6.5, and hence there exists

i < j such that there exists an inf and label preserving embedding from T ′i into T ′j .
This will preserve the labels of each terminal node, and since only terminal nodes have
label > n, it follows that this embedding will be an inf, label and terminal preserving
embedding from Ti into Tj.

This allows the derivation of the Internal Finite Tree Embedding Theorem. Firstly,
define a full tree as a tree where all nodes of valence 0 have the same height, and all
nodes of valence > 0 have the same valence. Define a truncation of a tree T to be the
tree obtained by restricting T to all nodes whose height is as most some given natural
number.



Theorem 6.7 (Internal Finite Tree Embedding Theorem) Let k, n ≥ 1 and let
T be a sufficiently tall full finite n-labelled tree of valence k. Then there is an inf, label
and terminal preserving embedding from some truncation of T into some truncation of
T of greater height.

Proof: Let k, n ≥ 1 and suppose the theorem is false. The full finite n-labelled trees
of valence k or valence 0 form an infinite finitely branching tree TR under the relation
of truncation.

Let TR′ be the full finite n-labelled trees of valence k or 0 for which the theorem
holds false, under the relation of truncation. Then TR′ will also be an infinite finitely
branching tree. Hence, by König’s Tree Lemma 2.24, TR′ contains an infinite path.

This infinite path will form a sequence of trees T1, T2, . . . of full finite n-labelled
trees of valence k or 0 for which the theorem fails, and where each Ti is the truncation
of height i of Ti+1. However, by Theorem 6.6, there exists i, j ∈ N such that i < j and
there is an inf, label and terminal preserving embedding from Ti into Tj. Hence, the
Internal Finite Tree Embedding Theorem is true for Tj, which is a contradiction.

The following theorem is similarly unprovable in first-order arithmetic, and is in fact
shown by Friedman to be equivalent to The Internal Finite Tree Embedding Theorem.

Theorem 6.8 For all k, n ≥ 1 there exists r such that the following holds. Let
T1, T2, . . . , Tr be full n-labelled trees of valence k or 0, where for each 1 ≤ i ≤ r,
Ti has height i. Then there exists i, j ∈ N such that i < j ≤ r with an inf and label
preserving embedding from Ti into Tj.

Proof: Suppose the theorem is false. Then there exists k, n ≥ 1 such that for all r ∈ N,
every finite sequence T1, T2, . . . , Tr of full n-labelled trees of valence k or 0 where each Ti
has height i has no i < j ≤ r such that there is an inf and label preserving embedding
from Ti into Tj.

Let TR be the set of trees such that the above holds under the relation of trun-
cation. Then TR forms an infinite finitely branching tree, and hence by König’s Tree
Lemma 2.24, TR contains an infinite path. This infinite path forms an infinite se-
quence T1, T2, . . . . By Theorem 6.5, there exists i < j such that there is an inf and
label preserving embedding from Ti into Tj. Hence, with r = j, Theorem 6.8 is true, a
contradiction.

As a final example of the extraordinarily large growth associated with these unprov-
able theorems, the next result is given. Friedman [10] showed this by using a sequence
of size n(4) (defined in Section 5) to construct a sequence of trees that meets the con-
ditions of Theorem 6.8. Firstly, let TREE(n) be the length of the longest sequence
T1, T2, . . . , Tk of trees that meet the condition for Theorem 6.8.



Theorem 6.9 TREE(3) > n(4).

7 Conclusion

One key factor in all of these theorems is the extremely large growth rate associated
with them. Even the Ackermann function, known as one of the fastest growing to-
tal computable functions, is often used to define lower bounds for the growth rates
involved. Friedman, understandably, seems to take great pleasure in his incomprehen-
sibly large numbers, describing Graham’s number as “puny” in size compared to n(4)
and TREE(3) on FOM, a foundations of mathematics e-mail list [11].

The Goodstein sequence presented in this paper was the sequence that resulted
from increasing the base by 1 at each step in the sequence. The sequence originally
described by Goodstein was as follows. Let σn be a non-decreasing sequence. Rather
than first writing the number in hereditary base 2 representation then increasing the
base by 1 at each step, begin the sequence with the hereditary base σ1 representation
and after the n-th step, increase the base to hereditary base σn+1 [1].

Let m ∈ N and let σn be a non-decreasing sequence. Using the notation described in
Lemma 3.5, let mn be the sequence such that where m1 = m and mn = fmn−1,σn−1(σn)−
1. Goodstein’s paper showed that the sequence mn eventually terminates.

Now let hσ1 (m) = m and hσn(m) = fh
σ
n−1(m),σn−1(σn) − 1. For instance, if σn = n

then hσn(m) is simply the standard Goodstein sequence.
Then, let g1(m) be the length of the sequence hnn(m). Naturally, this forms an

infinite sequence g1(1), g1(2), . . . . Let g1 denote this sequence. Next, for k ∈ N define
the sequence gk such that gk(m) is the length of the sequence h

gk−1
n (m). Assuming

that gk(m+ 1) ≥ gk(m), the sequence gk+1 eventually terminates. As an example, the
sequence g2(m) is the length of the sequence obtained by starting at m, and at stage
i, increasing the base by the length of the Goodstein sequence for i.

Finally, let G(m) be the length of the sequence hσn(m) where σi = gi(i). Assuming
that gi(i) ≤ gi+1(i + 1), then this sequence also terminates. No investigations have
been done in this direction, but, due to each G(m) being defined in terms of other in-
comprehensibly large numbers, it seems that the growth of the function G(m) would be
incomprehensibly incomprehensible. One could continue to define Goodstein sequences
in such a way, forming a hierarchy of Goodstein sequences.

Also, it was mentioned in Section 2.2 that the ordinal numbers show significant
use in proof theory. For instance, in proof theory, ordinal analysis assigns an ordinal
number to a theory as a measure of its strength. The proof theoretic ordinal is the
smallest recursive ordinal which cannot be proven to be well-ordered. For instance,



the proof theoretic ordinal of Peano arithmetic is ε0, where ε0 is the smallest ordinal ε
satisfying the equation ε = ωε. It can also be shown that ε0 = sup{ω, ωω, ωωω , . . . }.

Lastly, I would like to thank Marcel Jackson for supervising the project and for
providing the main idea and sources involved. I would also like to thank AMSI for
giving me the opportunity to complete this project, as it has provided valuable insight
into the workings of mathematical research and writing.
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